
1

Getting Started with SystemVerilog Assertions
DesignCon-2006 Tutorial

by Sutherland HDL, Inc., Portland, Oregon

© 2006 by Sutherland HDL, Inc.
Portland, Oregon
All rights reserved

Presented by Stuart Sutherland
Sutherland HDL, Inc.
www.sutherland-hdl.com

presented by Stuart Sutherland of

Getting Started With

SystemVerilog
Assertions

training Engineers to be SystemVerilog Wizards!

L
HD

Sutherland

www.sutherland-hdl.com

3

About the Presenter...

Stuart Sutherland, a SystemVerilog wizard
Independent Verilog/SystemVerilog consultant and trainer

Hardware design engineer with a Computer Science degree
Heavily involved with Verilog since 1988
Specializing in Verilog and SystemVerilog training

Member of the IEEE 1800 SystemVerilog standards group
Involved with the definition of SystemVerilog since its inception
Technical editor of SystemVerilog Reference Manual

Member of IEEE 1364 Verilog standards group since 1993
Past chair of Verilog PLI task force
Technical editor of IEEE 1364-1995, 1364-2001 and 1364-2005
Verilog Language Reference Manual

www.sutherland-hdl.com

2

Getting Started with SystemVerilog Assertions
DesignCon-2006 Tutorial

by Sutherland HDL, Inc., Portland, Oregon

© 2006 by Sutherland HDL, Inc.
Portland, Oregon
All rights reserved

Presented by Stuart Sutherland
Sutherland HDL, Inc.
www.sutherland-hdl.com

4

This presentation will…

Provide an overview of some of the major features
in SystemVerilog Assertions

Show how to write basic SystemVerilog Assertions

visit www.sutherland-hdl.com for details on
our comprehensive SystemVerilog workshops

The goal is to provide enough detail to get started with
SystemVerilog Assertions!

But, there are lot of SVA features that we cannot cover in this
3-hour tutorial
Sutherland HDL’s complete training course on SystemVerilog
Assertions is a 3-day workshop

5

What This Tutorial Will Cover

Why assertions are important
SystemVerilog Assertions overview

Immediate assertions
Concurrent assertions

Where assertions should be specified
Who should specify assertions
Developing an assertions test plan

Assertions for Design Engineers
Verifying design assumptions

Assertions for Verification Engineers
Verifying functionality against the specification
Specifying complex event sequences

Special SystemVerilog Assertion features
Assertion system tasks and functions
Assertion binding
Assertion simulation semantics

3

Getting Started with SystemVerilog Assertions
DesignCon-2006 Tutorial

by Sutherland HDL, Inc., Portland, Oregon

© 2006 by Sutherland HDL, Inc.
Portland, Oregon
All rights reserved

Presented by Stuart Sutherland
Sutherland HDL, Inc.
www.sutherland-hdl.com

6

What Is
An Assertion?

An assertion is a statement that a certain property must be true

0 1 2 3 4 5

req
ack

After the request signal is
asserted, the acknowledge signal

must arrive 1 to 3 clocks later

Assertions are used to:
Document the functionality of the design
Check that the intent of the design is met over simulation time
Determine if verification tested the design (coverage)

Assertions can be specified:
By the design engineer as part of the model
By the verification engineer as part of the test program

7

Is Assertion Based Verification
Worth the Effort?

Several papers have shown that Assertion-Based Verification
(ABV) can significantly reduce the design cycle, and improve the
quality of the design

Using assertions will make my
work as an engineer easier!

(engineering without assertions)

4

Getting Started with SystemVerilog Assertions
DesignCon-2006 Tutorial

by Sutherland HDL, Inc., Portland, Oregon

© 2006 by Sutherland HDL, Inc.
Portland, Oregon
All rights reserved

Presented by Stuart Sutherland
Sutherland HDL, Inc.
www.sutherland-hdl.com

8

Why Is Using SystemVerilog
Assertions Important?

It’s a verification technique that is embedded in the language
Gives “white box” visibility into the design

Enables specifying design requirements with assertions
Can specify design requirements using an executable language

Enables easier detecting of design problems
In simulation, design errors can be automatically detected

Error reports show when error occurred with insight as to why
Formal analysis tools can prove that the model functionality does
or does not match the assertion

Can generate “counter-examples” (test cases) for assertion failures
Enables constrained random verification with coverage

Assertions can be used to report how effective random stimulus
was at covering all aspects of the design

9

What is
Formal Verification?

Formal verification can statically (without using simulation) …
Exhaustively prove that design functionality complies with the
assertions about that design
Find corner case bugs in complex hardware

It is not necessary to write a testbench to cover all possible
behaviors

Demonstrate functional errors with counterexamples
A counterexample is a test case that causes an assertion failure
Formal tools can automatically create counterexamples

Hybrid formal verification tools (such as Synopsys Magellan):
Combine random simulation with formal verification

Higher capacity than purely formal techniques
Better state-space coverage than random simulation alone

5

Getting Started with SystemVerilog Assertions
DesignCon-2006 Tutorial

by Sutherland HDL, Inc., Portland, Oregon

© 2006 by Sutherland HDL, Inc.
Portland, Oregon
All rights reserved

Presented by Stuart Sutherland
Sutherland HDL, Inc.
www.sutherland-hdl.com

10

Assertion Coverage

Assertion coverage helps answer the questions:
Are there enough assertions in the design?
Is the verification plan for simulation complete?
How thorough is the formal verification analysis?

Assertion coverage can report on:
The number of assertions that never triggered
The number of assertions that only had vacuous successes

A |-> B;
If "A" is never true, then "B" is never tested
(the assertion is always "vacuously true“)

If A is true then
B must be true

assertion succeeds if either B or C is true

A |-> ##[0:10] (B || C); If "B" is true every time,
the "C" is never tested

If A is true then either
B or C must be true

within 10 clock cycles

The number of assertions that did not test every branch

11

Adopting an Assertion Based
Verification Methodology

An Assertion-Based Verification (ABV) methodology addresses
several verification questions:

Who writes the assertions?
What languages should we use?
Are there assertion libraries?
How do we debug assertions?
How are assertions controlled in simulation?
Can we use assertions to measure functional coverage?
What about formal verification of assertions?
How do we know when we have written enough assertions?

As we go through this tutorial, we will discuss and answer several
of these questions

6

Getting Started with SystemVerilog Assertions
DesignCon-2006 Tutorial

by Sutherland HDL, Inc., Portland, Oregon

© 2006 by Sutherland HDL, Inc.
Portland, Oregon
All rights reserved

Presented by Stuart Sutherland
Sutherland HDL, Inc.
www.sutherland-hdl.com

12

What's Next…

Why assertions are important
SystemVerilog Assertions overview

Immediate assertions
Concurrent assertions

Where assertions should be specified
Who should specify assertions
Developing an assertions test plan

Assertions for Design Engineers
Verifying design assumptions

Assertions for Verification Engineers
Verifying functionality against the specification
Specifying complex event sequences

Special SystemVerilog Assertion features
Assertion system tasks and functions
Assertion binding
Assertion simulation semantics

13

Verilog Does Not Have
An Assertion Construct

Verilog does not provide an assertion construct
Verification checks must be coded with programming statements
0 1 2 3 4 5

req
ack

always @(posedge req) begin
@(posedge clk) ; // synch to clock
fork: watch_for_ack

parameter N = 3;
begin: cycle_counter

repeat (N) @(posedge clk);
$display("Assertion Failure", $time);
disable check_ack;

end // cycle_counter
begin: check_ack

@(posedge ack)
$display("Assertion Success", $time);
disable cycle_counter;

end // check_ack
join: watch_for_ack

end

Each request must be followed by an
acknowledge within 2 to 3 clock cycles

To test for a sequence of events
requires several lines of Verilog code
• Difficult to write, read and maintain
• Cannot be turned off during reset

or other don’t care times

7

Getting Started with SystemVerilog Assertions
DesignCon-2006 Tutorial

by Sutherland HDL, Inc., Portland, Oregon

© 2006 by Sutherland HDL, Inc.
Portland, Oregon
All rights reserved

Presented by Stuart Sutherland
Sutherland HDL, Inc.
www.sutherland-hdl.com

14

Checker’s Written in Verilog
Must be Hidden from Synthesis

A checking function written in Verilog looks like RTL code
Synthesis compilers cannot distinguish the hardware model from
the embedded checker code
To hide Verilog checker code from synthesis compilers, extra
synthesis pragma’s must be added to the code

if (if_condition)
// do true statements

else
//synthesis translate_off
if (!if_condition)
//synthesis translate_on

// do the not true statements
//synthesis translate_off
else

$display("if condition tested either an X or Z");
//synthesis translate_on

RTL code

checker code

RTL code

checker code

How many engineer’s will go to
this much extra effort to add

embedded checking to an
if…else RTL statement?

15

Advantages of
SystemVerilog Assertions

SystemVerilog Assertions have several advantages over coding
assertion checks in Verilog…

Concise syntax!
Dozens of lines of Verilog code can be represented in one line of
SVA code

Can have severity levels!
SystemVerilog assertion failures can be non-fatal or fatal errors
Simulators can enable/disable failure messages based on severity

Ignored by Synthesis!
Don’t have to hide Verilog checker code within convoluted
translate_off / translate_on synthesis pragmas

Can be disabled!
SystemVerilog assertions can be turned off during reset, or until
simulation reaches a specific simulation time or logic state

8

Getting Started with SystemVerilog Assertions
DesignCon-2006 Tutorial

by Sutherland HDL, Inc., Portland, Oregon

© 2006 by Sutherland HDL, Inc.
Portland, Oregon
All rights reserved

Presented by Stuart Sutherland
Sutherland HDL, Inc.
www.sutherland-hdl.com

16

SystemVerilog Has
Two Types of Assertions

Immediate assertions test for a condition at the current time

always @(state)
assert (state == $onehot) else $fatal;

generate a fatal error state
variable is not a one-hot value

An immediate assertion is the same as an if…else statement, but with assertion controls

a_reqack: assert property (@(posedge clk) req ##[1:3] ack;) else $error;

0 1 2 3 4 5

req
ack

a complex sequence can be
defined in very concise code

Concurrent assertions test for a sequence of events spread over
multiple clock cycles

One line of SVA code replaces all the Verilog code in the example three slides back!

17

Immediate Assertions

An immediate assertion is a test of an expression the moment
the statement is executed

[name :] assert (expression) [pass_statement] [else fail_statement]

always @(negedge reset)
a_fsm_reset: assert (state == LOAD)

$display(“FSM reset in %m passed”);
else

$display(“FSM reset in %m failed”);

The name is optional:
• Creates a named hierarchy scope

that can be displayed with %m
• Provides a way to turn off specific

assertions

May be used in initial and always procedures, tasks and functions
Performs a boolean true/false test

If the test result is true, execute the pass statement
If the test is result false or unknown, execute the fail statement

Evaluates the test at the instant the assert statement is executed

9

Getting Started with SystemVerilog Assertions
DesignCon-2006 Tutorial

by Sutherland HDL, Inc., Portland, Oregon

© 2006 by Sutherland HDL, Inc.
Portland, Oregon
All rights reserved

Presented by Stuart Sutherland
Sutherland HDL, Inc.
www.sutherland-hdl.com

18

Concurrent Assertions

A concurrent assertion can test for a sequence of events spread
over multiple clock cycles

[name :] assert property (property_specification) pass_statement [else fail_statement]

always @(posedge clock)
if (State == FETCH)
ap_req_gnt: assert property (p_req_gnt) passed_count++; else $fatal;

property p_req_gnt;
@(posedge clock) request ##3 grant ##1 !request ##1 !grant;

endproperty: p_req_gnt

request must be true immediately, grant must be true 3 clocks cycles
later, followed by request being false, and then grant being false

optional pass statement optional fail statement

Use a PSL-like “property specification”
The property_specification describes a sequence of events
Can be specified in always blocks, in initial blocks, or stand-alone
(like continuous assignments)

19

Assertion Actions and Messages

The pass and fail statements can be any procedural statement
Can be used to print messages, increment a counter, specify
severity levels, …

The pass statement is optional
If left off, then no action is taken when the assertion passes

The fail statement is optional
The default is a tool-generated error message

always @(negedge reset)
a_fsm_reset: assert (state == LOAD); No action if pass, default message if fail

always @(negedge reset)
a_fsm_reset: assert (state == LOAD)
$display(“FSM reset in %m passed”);

else begin
$display(“FSM reset in %m failed”);
reset_errors++; // increment error count

end

User-defined pass/fail statements
can do anything desired

10

Getting Started with SystemVerilog Assertions
DesignCon-2006 Tutorial

by Sutherland HDL, Inc., Portland, Oregon

© 2006 by Sutherland HDL, Inc.
Portland, Oregon
All rights reserved

Presented by Stuart Sutherland
Sutherland HDL, Inc.
www.sutherland-hdl.com

20

Assertion Severity Levels

The assertion failure behavior can be specified
$fatal [(finish_number, “message”, message_arguments)] ;

Terminates execution of the tool
finish_number is 0, 1 or 2, and controls the information printed by the tool upon exit
(the same levels as with $finish)

$error [(“message”, message_arguments)] ;
A run-time error severity; software continues execution

$warning [(“message”, message_arguments)] ;
A run-time warning; software continues execution

$info [(“message”, message_arguments)] ;
No severity; just print the message

Software tools may
provide options to
suppress errors or
warnings or both

always @(negedge reset)
assert (state == LOAD) else $warning;

The message text is optional; if
not specified the tool-specific
message will still be printed

always @(negedge reset)
assert (state == LOAD)
else $fatal(0,“FSM %m behaved badly at %d”, $time);

The user-supplied message is appended to
a tool-specific message containing the
source file location and simulation time

21

Assertion Terminology

SystemVerilog supports three general categories of assertions…

Invariant assertions
A condition that should always be true (or never be true)
Example: A FIFO should never indicate full and empty at the same
time

Sequential assertions
A set of conditions occuring in a specific order and over a defined
number of clock cycles
Example: A request should be followed in 1 to 3 clock cycles by grant

Eventuality assertions
A condition should be followed by another condition, but with any
number of clock cycles in between
Example: When an active-low reset goes low, it should eventually go
back high

11

Getting Started with SystemVerilog Assertions
DesignCon-2006 Tutorial

by Sutherland HDL, Inc., Portland, Oregon

© 2006 by Sutherland HDL, Inc.
Portland, Oregon
All rights reserved

Presented by Stuart Sutherland
Sutherland HDL, Inc.
www.sutherland-hdl.com

22

What's Next…

Why assertions are important
SystemVerilog Assertions overview

Immediate assertions
Concurrent assertions

Where assertions should be specified
Who should specify assertions
Developing an assertions test plan

Assertions for Design Engineers
Verifying design assumptions

Assertions for Verification Engineers
Verifying functionality against the specification
Specifying complex event sequences

Special SystemVerilog Assertion features
Assertion system tasks and functions
Assertion binding
Assertion simulation semantics

23

Where Assertions Can be Specified

SystemVerilog Assertions can be… As we will see, Assertion Based
Verification should take advantage

of all of these capabilitiesEmbedded in the RTL code
Executes as a programming statement, in-line with the RTL
procedural code
Will be ignored by synthesis

In the design model, as a separate, concurrent block of code
Executes in parallel with the design code throughout simulation
Will be ignored by synthesis

External to the design model, in a separate file
Can be bound to specific instances of design models
Executes in parallel with the design code throughout simulation
Allows verification engineers to add assertions to the design
without actually modifying the design code
Synthesis never sees the assertion code

12

Getting Started with SystemVerilog Assertions
DesignCon-2006 Tutorial

by Sutherland HDL, Inc., Portland, Oregon

© 2006 by Sutherland HDL, Inc.
Portland, Oregon
All rights reserved

Presented by Stuart Sutherland
Sutherland HDL, Inc.
www.sutherland-hdl.com

24

Who Should Write the Assertions?

Assertions are verification constructs, but…
Should assertions only be written by the verification team?

Assertions are for design engineers, too!
Designs are full of assumptions

Inputs to the module are valid values
Handshakes are always completed
Case statements never take unintended branches

Design engineers should add assertions as the code is written
Every assumption about the design should be an assertion

No X values on inputs
State machine sequencing is as intended
requests are followed by an acknowledge

25

Case Study:
Assertions for a Small DSP Design

A small Digital Signal Processor (DSP) design is used in this
presentation to illustrate how to use SystemVerilog Assertions

The DSP is used as a training lab in Sutherland HDL courses
Synthesis students get to model the DSP as a final project
Assertion students get to add assertions to the DSP
The DSP is not a real design — it is scaled down for lab purposes

The DSP contains…
A clock generator/reset synchronizer
A state machine
Several registers
A program counter
Combinatorial decoder and ALU
Program and data memories
A tri-state data bus

13

Getting Started with SystemVerilog Assertions
DesignCon-2006 Tutorial

by Sutherland HDL, Inc., Portland, Oregon

© 2006 by Sutherland HDL, Inc.
Portland, Oregon
All rights reserved

Presented by Stuart Sutherland
Sutherland HDL, Inc.
www.sutherland-hdl.com

26

DSP Case Study:
Block Diagram

wrN

rdN

addr data

data
memory

opcode[2:0]

b_data[15:0]

alu

pc
iw [15:0]

rstN

load_pc

inc_pc

cnt
d

load

inc

rstN

pc_cnt[11:0]

iw_data[15:0]

load_f

register16

rstN

load

d q

vcc

sys_clk
clk>

fetch
registergnd

vcc wrN

rdN

addr data

iw
 [1

5:
12

]

iw
 [1

1:
0]

sys_clk
clk>

data [15:0]

iobuf

data_rdyN

a

opcode

b

result

da
ta

 [1
5:

0]

alu_out [15:0]

status_reg

exception
zero_flag

sys_clk clk>

rstN rstN

load_s load r_in

xbit

xbit

x_in

r_reg x_reg z_reg

load_b

sys_clk

rstN

load

d q

rstN

operand
register

> clk

ext_rstN
(from test bench)

rstN

sys_clk
ctl_clkclock_gen

ext_clk
(from test bench)

decoder
instruction

opcode
ALU

operation
decode

dmem_rdN

dmem_wrN

controller
load_s

load_b

load_f

load_pc

rslt_oeN

dout_oeN

inc_pc

load_s

load_b

load_f

load_pc

rslt_oeN

dout_oeN

dmem_rdN

inc_pc

halt

set_brset_br

ctl_clk clk>

exception exception

zero_flag zero_flag

rstN rstN

instruction

branching branching

halt

dmem_wrN

iobuf

rslt_oeN

result [15:0]

zbit

zbit

z_in

data _out[15:0]

register16

ram
(instance
“dmem”)

program
memory

ram
(instance
“pmem”)

program
counter

set_br

b_in d_in

dout_oeN

branching

b_reg d_reg

The DSP design contains a
variety of types of logic blocks

27

Developing An Assertions Test Plan

Before writing assertions. you need an “Assertions Test Plan”

The Assertions Test Plan should be developed before any design code is written!

Which team is responsible for writing each assertion
The verification team?
The design team?

Specifies what functionality needs to be verified with assertions
What type of assertion is needed for each test

Immediate or concurrent?
Invariant, sequential or eventuality?

Where the assertion should be placed
Embedded in the design?
At the system interconnect level?
Bound into the design?

14

Getting Started with SystemVerilog Assertions
DesignCon-2006 Tutorial

by Sutherland HDL, Inc., Portland, Oregon

© 2006 by Sutherland HDL, Inc.
Portland, Oregon
All rights reserved

Presented by Stuart Sutherland
Sutherland HDL, Inc.
www.sutherland-hdl.com

28

An Assertions Test Plan Example

RAM assertions

verification teamsequentialIf load, then pc == d input (must allow for clock-to-q delay)

verification teamsequentialIf increment, then pc increments by 1 (must allow for clock-to-q delay)

verification teamsequentialIf !load and !increment, then on posedge of clock, pc does not change (must
allow for clock-to-q delay)

design teaminvariantIf increment, then d input never has any X or Z bits

design teaminvariantload and increment are mutually exclusive

Assigned ToAssertion
TypeFunctionality to Verify

design teamsequentialdata never has any X or Z bits when reading from or writing to the RAM

design teaminvariantaddress never has any X or Z bits when reading from or writing to the RAM

design teaminvariant!rdN and !wrN are mutually exclusive

Assigned ToAssertion
TypeFunctionality to Verify

Program Counter assertions

29

An Assertions Test Plan Example

ALU assertions

verification teaminvariantzbit is always set if result == 0

design teaminvariantAfter reset, the opcode input never have any X or Z bits

design teaminvariantAfter reset, the B input never have any X or Z bits

verification teaminvariantxbit is always set if a mathematical operation results overflow or underflow

verification teaminvariantxbit is never set if a mathematical operation does not result in an overflow or
underflow

verification teaminvariantxbit is never set for non-arithmetic operations

verification teamsequentialIf load, then pc == d (must allow for clock-to-q delay)

verification teaminvariantzbit is never set if result != 0

design teamunique caseAll instructions are decoded

design teaminvariantAfter reset, the A, input never have any X or Z bits

Assigned ToAssertion
TypeFunctionality to Verify

15

Getting Started with SystemVerilog Assertions
DesignCon-2006 Tutorial

by Sutherland HDL, Inc., Portland, Oregon

© 2006 by Sutherland HDL, Inc.
Portland, Oregon
All rights reserved

Presented by Stuart Sutherland
Sutherland HDL, Inc.
www.sutherland-hdl.com

30

What's Next…

A 10 Minute Break!

31

What's Next…

Why assertions are important
SystemVerilog Assertions overview

Immediate assertions
Concurrent assertions

Where assertions should be specified
Who should specify assertions
Developing an assertions test plan

Assertions for Design Engineers
Verifying design assumptions

Assertions for Verification Engineers
Verifying functionality against the specification
Specifying complex event sequences

Special SystemVerilog Assertion features
Assertion system tasks and functions
Assertion binding
Assertion simulation semantics

16

Getting Started with SystemVerilog Assertions
DesignCon-2006 Tutorial

by Sutherland HDL, Inc., Portland, Oregon

© 2006 by Sutherland HDL, Inc.
Portland, Oregon
All rights reserved

Presented by Stuart Sutherland
Sutherland HDL, Inc.
www.sutherland-hdl.com

32

Guideline!

Designer engineers should write assertions to verify assumptions that
affect the functionality of a design block

Example: The ALU block assumes that the A, B and opcode inputs will
never have a logic X or Z value

The RTL code depends on this assumption to function properly
When modeling the ALU, the designer should add assertions to the
design block that verify these assumptions hold true

The assertion documents the designer’s assumptions
Should the assumption prove false, the assertion failure will help
isolate where a functional problem arose

Assertions should not duplicate RTL logic!
RTL logic monitors input changes and causes an effect on an output
An assertion should monitor output changes, and verify that the input
values will cause that effect

Poor assertion: If the ALU result is zero, then the zbit should be set
Good assertion: If the zbit is set, then the ALU result should be zero

33

Assertion Plan Example 1:
Assertions on ALU Inputs

ALU design engineer assertions example

…

design teaminvariantAfter reset, the opcode input never have any X or Z bits

design teaminvariantAfter reset, the B input never have any X or Z bits

design teamunique caseAll instructions are decoded

design teaminvariantAfter reset, the A, input never have any X or Z bits

Assigned ToAssertion
TypeFunctionality to Verify

always_comb begin

// Check that inputs meet design assumptions (no X or Z bits)
ai_a_never_x: assert (^a !== 1'bx);
ai_b_never_x: assert (^b !== 1'bx);
ai_opc_never_x: assert (^opcode !== 1'bx);

unique case (opcode) // “unique” verifies all opcodes are decoded
... // decode and execute operations

endcase
end

// Check that inputs meet design assumptions (no X or Z bits)
ai_a_never_x: assert (^a !== 1'bx);
ai_b_never_x: assert (^b !== 1'bx);
ai_opc_never_x: assert (^opcode !== 1'bx);

unique case (opcode) // “unique” verifies all opcodes are decoded

Design engineer assertions are
simple to add, and can greatly

reduce hard-to-find errors!

17

Getting Started with SystemVerilog Assertions
DesignCon-2006 Tutorial

by Sutherland HDL, Inc., Portland, Oregon

© 2006 by Sutherland HDL, Inc.
Portland, Oregon
All rights reserved

Presented by Stuart Sutherland
Sutherland HDL, Inc.
www.sutherland-hdl.com

34

Assertion Plan Example 2:
Assertions on RAM Inputs

RAM design engineer assertions example

…
design teaminvariant!rdN and !wrN are mutually exclusive

Assigned ToAssertion
TypeFunctionality to Verify

module ram (...);
...
// write cycle
always_latch begin
if (!wrN) begin
// assertion to check that no bits of address or data input are X or Z
ai_addr_never_x: assert (^addr !==1'bx);
ai_data_never_x: assert (^data !==1'bx);
mem[addr] <= data;

end
end

// assertion to check that read and write are never low at the same time
always @(rdN or wrN)
ai_read_write_mutex: assert (!(!rdN && !wrN));

This is so simple…why am I not
already doing this in all my designs?

// assertion to check that no bits of address or data input are X or Z
ai_addr_never_x: assert (^addr !==1'bx);
ai_data_never_x: assert (^data !==1'bx);

// assertion to check that read and write are never low at the same time
always @(rdN or wrN)
ai_read_write_mutex: assert (!(!rdN && !wrN));

This check is written to run in
parallel with the design logic

35

What's Next…

Why assertions are important
SystemVerilog Assertions overview

Immediate assertions
Concurrent assertions

Where assertions should be specified
Who should specify assertions
Developing an assertions test plan

Assertions for Design Engineers
Verifying design assumptions

Assertions for Verification Engineers
Verifying functionality against the specification
Specifying complex event sequences

Special SystemVerilog Assertion features
Assertion system tasks and functions
Assertion binding
Assertion simulation semantics

18

Getting Started with SystemVerilog Assertions
DesignCon-2006 Tutorial

by Sutherland HDL, Inc., Portland, Oregon

© 2006 by Sutherland HDL, Inc.
Portland, Oregon
All rights reserved

Presented by Stuart Sutherland
Sutherland HDL, Inc.
www.sutherland-hdl.com

36

Guideline!

Verification engineers should write assertions that verify design
functionality meets the design specification

Example: The zero flag output of the ALU block should always be set if
the ALU result output is zero

An assertion failure will help isolate the cause of a functional problem

Assertions should not duplicate RTL logic!
RTL logic monitors input changes and causes an effect on an output
An assertion should monitor output changes, and verify that the input
values will cause that effect

Poor assertion: If the ALU result is zero, then the zbit should be set
Good assertion: If the zbit is set, then the ALU result should be zero

37

Concurrent Assertion
Building Blocks

assert property (@posedge clk) req |-> gnt ##1 (done && !err));

Verification
Directives

Property
Declarations

Sequential
Regular Expressions

Boolean
Expressions

used to
build

used to
build

used to
build

Verilog, SystemVerilog and
special assertion methods

that return true/false results

a sequence can be
named or unnamed

a property can be
named or unnamed

assert, cover,
assume, expect

19

Getting Started with SystemVerilog Assertions
DesignCon-2006 Tutorial

by Sutherland HDL, Inc., Portland, Oregon

© 2006 by Sutherland HDL, Inc.
Portland, Oregon
All rights reserved

Presented by Stuart Sutherland
Sutherland HDL, Inc.
www.sutherland-hdl.com

38

Property Blocks
and Sequence Blocks

The argument to assert property() is a property specification
Can be defined in a named property block
Contains the definition of a sequence of events

always @(posedge clock)
if (State == FETCH)
assert property (request ##1 grant) else $error;

A simple sequence can be specified directly in the assert property

The clock cycle can be inferred
from where the assertion is called

ap_Req2E: assert property (pReq2E) else $error;

property pReq2E ;
@(posedge clock) (request ##3 grant ##1 (qABC and qDE));

endproperty: pReq2E

A property can reference
and perform operations
on named sequences

sequence qABC;
(a ##3 b ##1 c);
endsequence: qABC

A complex sequence can be partitioned into sequence blocks
Low level building blocks for sequence expressions

sequence qDE;
(d ##[1:4] e);
endsequence: qDE

39

Expression Sequences
and the ## Cycle Delay

A sequence is a series of true/false expressions spread over one
or more clock cycles
represents a “cycle delay”

Specifies the number of clock cycles to wait until the next
expression in the sequence is evaluated

The first expression is evaluated immediately
Subsequent expressions are evaluated at later clock cycles

property p_request_grant;
@(posedge clock) request ##1 grant ##1 !request ##1 !grant;

endproperty

ap_request_grant : assert property (p_request_grant); else $fatal;

request must be followed one clock cycle later by grant
grant must followed one clock cycle later by !request
!request must be followed one clock cycle later by !grant

“@(posedge clock)” is not a delay, it specifies what ## represents

20

Getting Started with SystemVerilog Assertions
DesignCon-2006 Tutorial

by Sutherland HDL, Inc., Portland, Oregon

© 2006 by Sutherland HDL, Inc.
Portland, Oregon
All rights reserved

Presented by Stuart Sutherland
Sutherland HDL, Inc.
www.sutherland-hdl.com

40

Multiple Cycle Clock Delays

##n specifies a fixed number of clock cycles
n must be a non-negative constant expression

request ##3 grant;
After evaluating request, skip 2 clocks

and then evaluate grant on the 3rd clock

request ##[1:3] grant; After evaluating request, grant must
be true between 1 and 3 clocks later

This sequence would evaluate as true for:
(request ##1 grant);

or (request ##2 grant);
or (request ##3 grant);

##[min_count:max_count] specifies a range of clock cycles
min_count and max_count must be non-negative constants

41

Infinite Cycle Delays

The dollar sign ($) is used to specify an infinite number of
cycles

request ##[1:$] grant;

request must true at the current cycle, then grant must
become true sometime between now and the end of time

In simulation, the end of time is when simulation finishes
Simulators might report an assertion that never
completed as a failure or as an uncompleted assertion

In formal verification, there is no end of time
Formal tools might keep trying to find a success until told
to stop

21

Getting Started with SystemVerilog Assertions
DesignCon-2006 Tutorial

by Sutherland HDL, Inc., Portland, Oregon

© 2006 by Sutherland HDL, Inc.
Portland, Oregon
All rights reserved

Presented by Stuart Sutherland
Sutherland HDL, Inc.
www.sutherland-hdl.com

42

Repeated Regular Expressions

A sequence of events can be repeated using a repeat count, in the
form [* n] (n must be a non-negative constant expression)

a ##1 (b[*3]); is equivalent to:
(a ##1 b ##1 b ##1 b)

(a[*0:3] ##1 b ##1 c);

is equivalent to:
(b ##1 c)

or (a ##1 b ##1 c)
or (a ##1 a ##1 b ##1 c)
or (a ##1 a ##1 a ##1 b ##1 c)

A range of steps can be repeated using a count, in the form
[* min_count : max_count] (must be a non-negative constants)

43

Infinite Repeated Expressions

An infinite number of repetitions can be specified using [*1:$]

property p_request_grant;
@(posedge clk)
request ##1 grant[*1:$] ##1 !request ##1 !grant;

endproperty

ap_request_grant: assert property (p_request_grant);

request

clk

grant

request must be followed one clock later by grant
grant must followed any number of clock cycles later by !request

grant must remain true until !request
!request must be followed one clock later by !grant

22

Getting Started with SystemVerilog Assertions
DesignCon-2006 Tutorial

by Sutherland HDL, Inc., Portland, Oregon

© 2006 by Sutherland HDL, Inc.
Portland, Oregon
All rights reserved

Presented by Stuart Sutherland
Sutherland HDL, Inc.
www.sutherland-hdl.com

44

Declarative and Procedural
Concurrent Assertions

Procedural concurrent assertions
Specified within an initial or
always procedure
Runs when the procedural block
calls the assert statement
Runs as a separate, parallel
thread to the procedure

module top(input bit clk);
logic req, grant;
property p1;
@(posedge clk) req |-> ##3 gnt;

endproperty

ap_p1: assert property (p1);
...

endmodule

Declarative concurrent assertions
Specified outside of initial
or always procedural blocks
Runs throughout the simulation
"Fires" (starts a new evaluation)
every clock cycle

module top(input bit clk);
logic req, grant;
property p2;
req ##3 gnt;

endproperty
always @(posedge clk)
if (State == FETCH)
ap_p2: assert property (p2);

...
endmodule

Declarative assertions are
the most common type

45

Conditioning Sequences Using
Implication Operators

Evaluation of a sequence can be preconditioned with an
implication operator

|-> overlapped implication operator
If the condition is true, sequence evaluation starts immediately
If the condition is false, the sequence acts as if it succeeded

property p_req_ack;
@(posedge clk) mem_en |-> (req ##2 ack);
endproperty: p_req_ack

overlapped

property p_req_ack;
@(posedge clk) mem_en |=> (req ##2 ack);
endproperty: p_req_ack

|=> non-overlapped implication operator
If the condition is true, sequence evaluation starts at the next clock
If the condition is false, the sequence acts as if it succeeded

req
mem_en

clk

ack

(req ##2 ack)non-overlapped

req
mem_en

clk

ack

(req ##2 ack)

23

Getting Started with SystemVerilog Assertions
DesignCon-2006 Tutorial

by Sutherland HDL, Inc., Portland, Oregon

© 2006 by Sutherland HDL, Inc.
Portland, Oregon
All rights reserved

Presented by Stuart Sutherland
Sutherland HDL, Inc.
www.sutherland-hdl.com

46

A “Gotcha”
With Simple Sequence Expressions

A simple sequence expression can test as true even if the
expressions changed in the wrong sequence

Given the following assertion:

Will this event sequence pass or fail?

property p_req_ack;
@(posedge clk) req |-> ##2 ack;
endproperty: p_req_ack

ap_req_ack: assert property (p_req_ack);

ack must be true 2
clock cycles after req

If the design requires an acknowledge must follow a request, then the
assertion must verify that ack does not become true until after req went true

req

clk

ack

The assertion will pass — it checks that ack
is true on the 2nd clock after req; it does not

check for when ack transitioned to true

1

S

47

Sequence Value Change Functions

Special system functions are provided to detect if a value changed
between two adjacent clock ticks:

$rose (expression);
returns true if the least significant bit of the expression changed to 1

$fell (expression);
returns true if the least significant bit of the expression changed to 0

$stable (expression);
returns true if the value of the expression did not change

property p_req_ack;
@(posedge clk) req |-> ##2 $rose(ack);
endproperty: p_req_ack

ap_req_ack: assert property (p_req_ack);

$rose and $fell should only be used with 1-bit wide signals;
if a vector is used, only the LSB is monitored for changes

req

clk

ack

1

S

24

Getting Started with SystemVerilog Assertions
DesignCon-2006 Tutorial

by Sutherland HDL, Inc., Portland, Oregon

© 2006 by Sutherland HDL, Inc.
Portland, Oregon
All rights reserved

Presented by Stuart Sutherland
Sutherland HDL, Inc.
www.sutherland-hdl.com

48

A “Gotcha”
With Declarative Assertions

A declarative assertion fires every single clock cycle
Given the following assertion:

Why is there an assertion failure on the cycle after acknowledge?

property p_req_ack;
@(posedge clk) req |-> ##2 $rose(ack);
endproperty: p_req_ack

ap_req_ack: assert property (p_req_ack);

ack must be true 2
clock cycles after req

If the design requires an req stay high until ack, then the assertion
should check for the rising edge of ack instead of the logic level of ack:

$rose(req) |-> ##2 $rose(ack);

req

clk

ack F

The assertion will pass the first check when
req is high, but a second check is started on

the next clock, because req is still high

1

S

2

49

Testing for a Cause

Many assertions test if a cause resulted in an effect
Every request should be followed by an acknowledge within 1 to 6 clock cycles

property pReqAck;
@(posedge clk) req |-> ##[1:6] $rose(ack);

endproperty: pReqAck

This means I have to look back in time — How do I do that?

Every acknowledge should have been preceded by a request in the last 1 to 6 clock cycles

Sometimes it is necessary to test if an effect had a cause

SVA provides three ways to look back into the past
$past() function
.ended method (for single clock assertions)
.matched method (for multi-clock assertions)

25

Getting Started with SystemVerilog Assertions
DesignCon-2006 Tutorial

by Sutherland HDL, Inc., Portland, Oregon

© 2006 by Sutherland HDL, Inc.
Portland, Oregon
All rights reserved

Presented by Stuart Sutherland
Sutherland HDL, Inc.
www.sutherland-hdl.com

50

Looking Back In Time for a Cause

An assertion can use the sampled value of an expression any
number of clock cycles in the past

$past (expr [, number_of_cycles] [, gating_expr] [, clocking_event]);
Returns the sampled value of expr any number of clock cycles prior to the time of the
evaluation of $past

number_of_cycles (optional) specifies the number of clock cycles in the past
If number_of_cycles is not specified, then it defaults to 1

gating_expr (optional) is used as a gating expression for the clocking event
clocking_event specifies the clocking event for sampling expr

If not specified, the clocking event of the property or sequence is used

property pReqCausedAck;
@(posedge clk) $rose(ack) |-> $past(req, 6);

endproperty: pReqCausedAck
if ack became true, then was req

true 6 clock cycles previously

51

Vector Analysis Functions

Vector analysis system functions provide a means to test the bits
of vectors for specific bit patterns

$onehot (expression);
returns true if only one bit of a vector is high

$onehot0 (expression);
returns true if at most one bit of a vector is high

$isunknown (expression);
returns true if any bit of a vector is X or Z

$countones (expression);
returns the number of bits that are set to 1 in a vector
(X and Z bits are not counted)

property pCheckState;
$onehot(state);

endproperty: pCheckState

a_pCheckState: assert property (@(posedge clk) pCheckState);

the assertion will fail if no bits are set or more than one bit is set at each clock cycle

26

Getting Started with SystemVerilog Assertions
DesignCon-2006 Tutorial

by Sutherland HDL, Inc., Portland, Oregon

© 2006 by Sutherland HDL, Inc.
Portland, Oregon
All rights reserved

Presented by Stuart Sutherland
Sutherland HDL, Inc.
www.sutherland-hdl.com

52

Assertion Plan Example 3:
Assertions on the Program Counter

Program Counter verification engineer assertions example

verification teamsequential
If !load and !increment, then on posedge of clock, pc does not change (must
allow for clock-to-q delay)

verification teamsequentialIf increment, then pc increments by 1 (must allow for clock-to-q delay)

verification teamsequentialIf load, then pc == d input (must allow for clock-to-q delay)

…

Assigned ToAssertion
TypeFunctionality to Verify

property p_no_change_if_not_enabled; // no change if not loading or incrementing
@(posedge clk)
(!load && !inc) |-> ##1 pc_cnt == $past(pc_cnt);

endproperty
ap_no_change_if_not_enabled: assert property (p_no_change_if_not_enabled);

property p_increment_if_enabled; // if increment is enabled, then PC increments
@(posedge clk)
inc |-> ##1 pc_cnt == ($past(pc_cnt) + 1);

endproperty
ap_increment_if_enabled: assert property (p_increment_if_enabled);

the PC load check is similar to this check

(!load && !inc) |-> ##1 $stable(pc_cnt);

inc |-> ##1 pc_cnt == ($past(pc_cnt) + 1);

53

Assertion Plan Example 4:
Assertions on the State Machine

FSM verification engineer assertions example

property p_fsm_onehot; // FSM state should always be one-hot
@(posedge clk) disable iff (!rstN) $onehot(state);

endproperty
ap_fsm_onehot: assert property (p_fsm_onehot);

property p_fsm_reset; // verify asynchronous reset to RESET state
@(posedge clk) !rstN |-> state == RESET;

endproperty
ap_fsm_reset: assert property (p_fsm_reset);

property p_fsm_decode_entry; // verify how DECODE state was entered
@(posedge clk) disable iff (!rstN) state == DECODE |->
$past(state) == RESET || $past(state) == STORE;

endproperty
ap_fsm_decode_entry: assert property (p_fsm_decode_entry);

verification teaminvariantState is always one-hot

verification teaminvariantIf !resetN (active low), state RESET

verification teamsequentialIf in DECODE state, prior state was RESET or STORE

Assigned ToAssertion
TypeFunctionality to Verify

@(posedge clk) disable iff (!rstN) $onehot(state);

@(posedge clk) disable iff (!rstN) state == DECODE |->
$past(state) == RESET || $past(state) == STORE;

@(posedge clk) !rstN |-> state == RESET;

Concurrent assertions
can be used to verify

coverage too!

27

Getting Started with SystemVerilog Assertions
DesignCon-2006 Tutorial

by Sutherland HDL, Inc., Portland, Oregon

© 2006 by Sutherland HDL, Inc.
Portland, Oregon
All rights reserved

Presented by Stuart Sutherland
Sutherland HDL, Inc.
www.sutherland-hdl.com

54

What's Next…

Why assertions are important
SystemVerilog Assertions overview

Immediate assertions
Concurrent assertions

Where assertions should be specified
Who should specify assertions
Developing an assertions test plan

Assertions for Design Engineers
Verifying design assumptions

Assertions for Verification Engineers
Verifying functionality against the specification
Specifying complex event sequences

Special SystemVerilog Assertion features
Assertion system tasks and functions
Assertion binding
Assertion simulation semantics

You can’t do these tricks
in Verilog or PSL!

55

Controlling Assertions

Special system tasks are used to control assertions

Modules are specified using a relative or full hierarchy path name
Assertions are specified using the name of the assertion
levels indicates how many levels of hierarchy below the specified
module(s) in which to turn assertions on or off

0 indicates all levels of hierarchy below the reference

$assertoff (levels [, list_of_modules_or_assertions]) ;
Stops the evaluation and execution of the specified assertions
Assertions currently being executed when $assertoff is called will complete execution

$assertkill (levels [, list_of_modules_or_assertions]) ;
Stops the evaluation and execution of the specified assertions
Assertions currently being executed when $assertoff is called are aborted

$asserton (levels [, list_of_modules_or_assertions]) ;
re-enables the evaluation and execution of the specified assertions

By default, all assertions are turned on

28

Getting Started with SystemVerilog Assertions
DesignCon-2006 Tutorial

by Sutherland HDL, Inc., Portland, Oregon

© 2006 by Sutherland HDL, Inc.
Portland, Oregon
All rights reserved

Presented by Stuart Sutherland
Sutherland HDL, Inc.
www.sutherland-hdl.com

56

Assertion Control Example

The following example:
Disables all assertions when reset is active (active low)
Re-enables all assertions after reset is complete

module assert_control ();
initial begin : disable_assertions_during_reset

@(negedge top_tb.reset_n) // active low reset
$display ("%0t %m Disabling assertions during reset", $time);
$assertoff(0, top_tb.cpu_rtl_1);

@(posedge top_tb.reset_n)
$display ("%0t %m Enabling assertions after reset", $time);
$asserton(0, top_tb.cpu_rtl_1);

end
endmodule : assert_control

module top_tb;
...
cpu_rtl cpu_rtl_1(clk, reset_n, .*); // instance of cpu module
assert_control assert_control(); // instance of assertion control
...

endmodule : top_tb

57

bind design-block-name_or_instance-name design-block-with-assertions ;

Binding Assertions to Design Blocks

Assertions and properties can be defined outside of the design
models, and “bound” to the design

SystemVerilog assertions can be bound to a specific instance of a
module or interface
SystemVerilog assertions can be bound to all instances of a
module or interface
The assertions can be defined in separate design blocks
(modules, interfaces, or programs)

Binding allows the verification engineer to add assertions to a
design without modifying the design files!

SystemVerilog assertions can also be bound to VHDL models
(requires a mixed language simulator or formal analysis tool)

29

Getting Started with SystemVerilog Assertions
DesignCon-2006 Tutorial

by Sutherland HDL, Inc., Portland, Oregon

© 2006 by Sutherland HDL, Inc.
Portland, Oregon
All rights reserved

Presented by Stuart Sutherland
Sutherland HDL, Inc.
www.sutherland-hdl.com

58

Behind the Curtains:
How Assertions are Simulated

The problem…
Assertion-like checks written in Verilog are just programming
statements

The checks execute with the same simulation semantics as the
RTL code
You must be very careful to avoid race conditions between the RTL
code and the checking routines

Assertions written in PSL are just comments
Comments have no standard simulation semantics — how a
simulator should execute PSL assertions is not defined!

The solution…
SVA defines concurrent assertion execution semantics

Race condition avoidance is built in!
All simulators will evaluate SVA in the same way!

59

Verilog Simulation Event Scheduling

Events within a simulation time step are divided into 4 regions
Execute all active events, then inactive events, then non-blocking
assignment update (NBA) events

Active events include procedural statements and assignment
statements

Re-iterate the three queues until all are empty

Next
Time Slot

Previous
Time Slot

Read Only

iterative
event queues

Active

Inactive

NBA

Parallel events within a region can execute
in an implementation-dependent order!

30

Getting Started with SystemVerilog Assertions
DesignCon-2006 Tutorial

by Sutherland HDL, Inc., Portland, Oregon

© 2006 by Sutherland HDL, Inc.
Portland, Oregon
All rights reserved

Presented by Stuart Sutherland
Sutherland HDL, Inc.
www.sutherland-hdl.com

60

Concurrent Assertions
and Simulation Event Scheduling

Concurrent assertion expressions are:
Sampled in a preponed region
Evaluated in an observe region, using the sampled values
Execute assertion pass or fail statements in a reactive region

Next
Time Slot

Previous
Time Slot

Postponed

Verilog 2001

SystemVerilog

Active

Inactive

NBA

Reactive

Observe

Preponed

sample
stable
values

evaluate
concurrent
assertions

execute
pass/fail

statements

61

It’s Time to Wrap Things Up…

Why assertions are important
SystemVerilog Assertions overview

Immediate assertions
Concurrent assertions

Where assertions should be specified
Who should specify assertions
Developing an assertions test plan

Assertions for Design Engineers
Verifying design assumptions

Assertions for Verification Engineers
Verifying functionality against the specification
Specifying complex event sequences

Special SystemVerilog Assertion features
Assertion system tasks and functions
Assertion binding
Assertion simulation semantics

31

Getting Started with SystemVerilog Assertions
DesignCon-2006 Tutorial

by Sutherland HDL, Inc., Portland, Oregon

© 2006 by Sutherland HDL, Inc.
Portland, Oregon
All rights reserved

Presented by Stuart Sutherland
Sutherland HDL, Inc.
www.sutherland-hdl.com

62

Summary

SystemVerilog Assertions enable true assertions based verification
Integrated into the Verilog/SystemVerilog language

Don’t have to hide assertions in comments
Assertions have full visibility to all design code
Execution order is defined within simulation event scheduling

Easy to write (compared to other assertion solutions)
Immediate and concurrent assertions
A concise, powerful sequential description language
Sequence building blocks for creating complex sequences

Binding allows verification engineers to add assertions to a design
without touching the design files

SystemVerilog assertions are a team effort
Some assertions written by the design team
Some assertions written by the verification team

63

Additional Resources

IEEE 1800-2005 SystemVerilog Language Reference Manual
2005, published by the IEEE, ISBN 0-7381-4811-3 (PDF version)

SystemVerilog Assertions Handbook
Cohen, Venkataramanan, Kumari, 2004, ISBN: 0-9705394-7-9

Assertion-Based Design, Second Edition (PSL and SVA)
Harry Foster, Adam Krolnik, David Lacey, 2004, ISBN: 1-4020-8027-1

SystemVerilog for Design (synthesizable SystemVerilog)
Sutherland, Davidmann and Flake, 2001, ISBN: 1-4020-7530-8

SystemVerilog Assertions Are For Design Engineers, Too
Sutherland and Mills, SNUG Conference paper, March 2006

Sutherland HDL offers comprehensive
training on SystemVerilog Assertions!

32

Getting Started with SystemVerilog Assertions
DesignCon-2006 Tutorial

by Sutherland HDL, Inc., Portland, Oregon

© 2006 by Sutherland HDL, Inc.
Portland, Oregon
All rights reserved

Presented by Stuart Sutherland
Sutherland HDL, Inc.
www.sutherland-hdl.com

64

What will assertions reveal about my design?

Questions & Answers…

A copy of this presentation will be available at
www.sutherland-hdl.com/papers

