DesignCon 2011

What, If Anything, In
SystemVerilog Will Help Me With
FPGA-based Designs?

Stuart Sutherland, Sutherland HDL, Inc.
stuart@sutherland-hdl.com, www.sutherland-hdl.com

Abstract

SystemVerilog has gained rapid acceptance as a powerful ASIC and custom IC design and verifi-
cation language. But what about FPGA designers? Is there anything in SystemVerilog that will
help make designing an FPGA easier and quicker, or is it best to stick with VHDL or classic Ver-
ilog for FPGA designs? There is no one right answer to this question — what is right for one com-
pany or project might not be best for another company or project. To answer the question for your
projects, you need accurate information. This paper examines:

1) A few of the features in SystemVerilog that might be of benefit in FPGA design.
2) Which of these features are supported by major commercial FPGA design tools.
3) Which of these features are supported by major FPGA vendors.

4) When, if ever, is the time for FPGA designers to use these System\erilog features.

The primary objective is help you determine if SystemVferilog is the right design language for
your projects today, or sometime in the future.

Author Biography

Stuart Sutherland is a well-known Verilog and SystemV\erilog expert, with more than 23 years of
experience using these languages for design and verification. His company, Sutherland HDL, spe-
cializes in training engineers to become true wizards using System\erilog. Stuart is an active
member of the IEEE SystemVerilog standards committee, and has been a technical editor for
every version of the IEEE Verilog and SystemVerilog Language Reference Manuals since the
standards began in 1993. Prior to founding Sutherland HDL, Mr. Sutherland worked as an engi-
neer on high-speed graphics systems used in military flight simulators. In 1988, he became a cor-
porate applications engineer for Gateway Design Automation, the founding company of Verilog,
and has been deeply involved in the use of Verilog and SystemVerilog ever since. Mr. Sutherland
has authored several books and conference papers on Verilog and SystemVerilog. He holds a
Bachelors Degree in Computer Science with an emphasis in Electronic Engineering Technology
and a Masters Degree in Education with an emphasis on eLearning.

Verilog versus SystemVerilog

Are you using SystemVerilog today? The answer might surprise you.

Technically, there is no such thing as “Verilog” anymore. The IEEE dropped the name Verilog in
2009, and changed the name of the standard to “SystemVerilog”.

A brief history lesson might help understand the reason for the a name change. Verilog began as a
proprietary language in the early 1980s, before there were any industry standards for hardware
design languages. Verilog quickly became popular with ASIC designers for several reasons,
which won’t be discussed here. In 1992, Verilog was made an open language, and shortly after-
wards the IEEE began the process of making Verilog a true industry standard, which became the
IEEE 1364-1995 Verilog standard. In 2001, the IEEE introduced a number of enhancements to
Verilog to keep pace with the ever-increasing complexity of hardware designs.

In keeping with Moore’s law, however, the size and complexity of hardware designs and verifica-
tion testbenches quickly outgrew the capabilities of Verilog (and VHDL, another IEEE standard
hardware design language). It wasn’t that Verilog (and VHDL) couldn’t model and verify these
complex designs, it was that the amount of code that was required was becoming unmanageable
and inefficient. The IEEE Verilog standards committee went to work defining a new generation of
Verilog with literally hundreds of enhancements, some small and some huge, to enable modeling
and verifying much larger and complex designs. The original intent was that these enhancements
would all be part of a new Verilog-2005 IEEE standard. However, the magnitude of the new fea-
tures was going to require an extensive overhaul of existing Verilog simulators, synthesis compil-
ers, and other engineering tools based on Verilog-2001. The IEEE made the decision to split the
new language features into a separate document, under a separate standards number, so that Elec-
tronic Design Automation (EDA) companies could continue to be Verilog compliant while imple-
menting the huge number of new language features. Thus, the IEEE 1364-2005[3] defined the
base Verilog language, and a separate document, “IEEE 1800-2005”[2] and dubbed “System\er-
ilog”, contained the definition of the many new features being added to Verilog.

The last piece in this brief history was the merging of the SystemVerilog extensions into the actual
Verilog document. This merged document was ratified and released by the IEEE in 2009. For var-
ious reasons — some political and some due to IEEE red tape — the merged document kept the
later standards number and name, IEEE 1800 SystemVerilog. In 2009, the IEEE officially ended
support of the original IEEE 1364 Verilog standard and the IEEE 1800-2009 System\erilog stan-
dard[1] superceded and replaced Verilog.

In short, SystemVerilog is Verilog, but it is Verilog on steroids. If you are doing anything with
what was once called the Verilog Hardware Description Language, you are actually using System-
Verilog, though perhaps not all of the features of the language. It is those features that is the focus
of this paper.

The SystemVerilog-2005 standard added several dozen major constructs and hundreds of smaller,
yet significant, extensions to the Verilog-2005 standard. These extensions fall into two categories:
constructs for modeling hardware and constructs for verifying hardware. This paper examines the
hardware modeling extensions to Verilog. An emphasis is placed on constructs that might benefit
FPGA designers, along with an explanation as to what those benefits might be.

Variable data types

SystemVerilog extends the old Verilog HDL variable types by adding 2-state types and C-like
integer types.

Bit-vector variables

Verilog has the reg variable type, which can be defined to represent any vector size. SystemVer-
ilog extends the Verilog bit-vector type with two new keywords:

logic — a 4-state variable with a user-defined vector width. logic is a synonym for the Verilog
reg type. The two keywords are interchangeable.

bit — a 2-state variable with a user-defined vector width. The bit type can be used any place a
Verilog reg type can be used, but will never contain a logic Z or X value.

The logic and bit variable types are synthesizable, and follow the same rules for synthesis as
reg variables.

Traditional Verilog had the integer variable type, which represented 32-bit signed integer stor-
age. SystemVerilog extends this with several new types:

byte — 2-state variable with a fixed vector width of 8 bits.
shortint — 2-state variable with a fixed width of 16 bits.
int — 2-state variable with a fixed width of 32 bits.
longint — 2-state variable with a fixed width of 32 bits.

These new variable types are synthesizable, and follow the same rules defined in the \Verilog
1364.1-2002 standard[4] for synthesizing integer variables.

What is the benefit in FPGA design projects? The logic keyword does not add any new func-
tionality over traditional Verilog, but it can help make code more self-documenting. The old reg
keyword was easy to confuse with the word “register”, which has special meaning in hardware.
The reg keyword does not, in any way, infer a hardware register, but engineers not familiar with
Verilog synthesis have been know to see the reg keyword and mistakenly assume it represented a
hardware register. Using the logic keyword eliminates the risk of this false assumption.

The int variable type does not offer any real benefit over the traditional \erilog integer type,
but it is a shorter keyword and more like the C language. Many engineers prefer to use int
instead of integer as a for-loop iterator type.

The bit, byte, and other 2-state data types can be useful in Object Oriented testbenches that use
constrained random value generation. In hardware models, however, these 2-state data types
should be avoided. 2-state variables can mask design problems that would otherwise have shown
up as a logic X. Furthermore, 2-state types becomes a simple interconnecting net after synthesis,
which can transfer 4-state values. This can lead to differences in RTL versus post-synthesis gate-
level simulation results. This difference can also impact formal verification of pre-synthesis ver-
sus post-synthesis models.

Net Data Types

SystemVerilog extends the traditional Verilog net data types with a new net type called uwire.
The new uwi re data type (“uwire” is short for “unresolved wire) only permits a single source to
drive a net. (This new net type is actually defined in the IEEE 1364-2005 Verilog standard[3], but
is often considered a SystemVerilog enhancement to traditional \Verilog.)

What is the benefit in FPGA design projects? The uwi re net type can prevent modeling errors
where single-source functionality is intended, but the same net name was inadvertently used more
than once.

Note: Many synthesis compilers translate uwire into wire in the synthesized model. Unfortu-
nately, this means the post-synthesis model no longer enforces single-driver semantics. Modifica-
tions to the post-synthesis netlist could result in unintentional multi-driver logic. This paper
recommends that synthesis compilers maintain the uwi re declaration in the resultant synthesized
netlist so that the single-source semantics are preserved in post-synthesis simulation.

User-defined types

The old Verilog language only had pre-defined built-in data types, such a reg and wire. It made
the language simple to learn and use, but also required more coding to model large designs with
complex data. SystemVerilog allows designers to create new, user-defined data types. Both vari-
ables and nets can be declared as user-defined types. If a net type keyword is not specified, then
user-defined types are assumed to be variables. SystemVerilog has several user-defined type con-
structs for use in design and verification. Only type definitions (typedef), enumerated types,
structures, and unions are synthesizable, and are discussed in this section of the paper. The non-
synthesizable user-defined types are not discussed.

Type definitions (typedef)

Designers can specify new data types that are constructed from built-in types and other user-
defined types using typedef, similar to C. Two simple examples are:

typedef int unsigned uint_t;
typedef enum bit {FALSE, TRUE} bool_t;

User-defined types can be declared in a package and used in any number of modules. Module
ports can also be declared as a user-defined type.
Enumerated types

Enumerated types allow variables and nets to be defined with a specific set of named values. Only
the synthesizable aspects of enumerated types are presented in this paper. The basic syntax for
declaring an enumerated type is:

// a variable that has 3 legal values
enum {WAITE, LOAD, READY} State;

Enumerated types have a base data type, which by default is int (a 2-state, 32-bit type). In the
example above, State is an int type, and WAITE, LOAD and READY have 32-bit int values.

Designers can specify an explicit base type, allowing enumerated types to more specifically
model hardware. An example is:

// a 4-state, 2-bit enumerated variable
enum logic [1:0] {WAITE, LOAD, READY} State;

The named values in the enumerated list are constants that have an associated logic value. By
default, the first label in the enumerated list has a logic value of 0, and each subsequent label is
incremented by one. Thus, in the example above, WAITE is 0, LOAD is 1, and READY is 2.

Designers can specify explicit values for any or all labels in the enumerated list. For example:

// 2 enumerated variables with one-hot values

enum logic [2:0] {WAITE = 37b001,
LOAD = 37b010,
READY = 3”b100} State, NextState;

SystemVerilog also provides several methods for working with enumerated types. The synthesiz-
able methods are: .first, . last, .next, .prev and .num. For example:

always @(posedge clock or negedge resetN)
if (resetN == 0)State <= State.first; // reset to first enum value
else State <= NextState;

always @(State or move_ahead)
if (move_ahead)
NextState <= State.next; // increment to next enum value

What is the benefit in FPGA design projects? Enumerated types can reduce or eliminate many
common coding errors, including errors that can very difficult to detect and to debug. The follow-
ing old-style Verilog example contains several simple errors that are all syntactically legal but
have functional bugs. Hopefully no engineer would make all of these mistakes in one piece of
code, but even one of these errors can be a tough bug to find in a large design.

localparam [2:0] WAIT=3"b001, LOAD=3"b010, DONE=3"b100;

localparam [2:0] RED=3"b001, GREEN=3b010, BLUE=3"b100;

reg [2:0] Statel, nStatel;
reg [1:0] State2, nState2; // BUG

variable is wrong size

always @(posedge clk or negedge rstN)
it (IrstN) Statel <= 0; // BUG
else Statel <= nState2; // BUG
always @(Statel)
case (Statel) // next state logic
WAIT : nStatel Statel + 1;
LOAD : nStatel Statel + 1; // BUG
DONE : nStatel Statel + 1; // BUG

reset to illegal value
wrong nState variable

results in illegal value
results in illegal value

The next example is almost identical to the one above, but modeled with System\erilog enumer-
ated types. Every one of the syntactically legal bugs above become syntax errors, instead of func-
tional bugs that must be detected and debugged during simulation.

typedef enum logic [2:0] {WAIT=3"b001, LOAD=3"b010, DONE=3"b100}
fsml_states;

typedef enum logic [1:0] {RED=3"b001, GREEN=3"b010, BLUE=3"b100}
fsm2_states; // ILLEGAL - size mismatch not allowed

fsml states Statel, nStatel;
fsm2_states State2, nState2;

always @(posedge clk or negedge rstN)

if (IrstN) Statel <= 0; // ILLEGAL

else Statel <= nState2; // ILLEGAL
always @(Statel)

case (Statel) // next state logic

WAIT : nStatel Statel + 1;

LOAD : nStatel = Statel + 1; // ILLEGAL
DONE : nStatel = Statel + 1; // ILLEGAL

must use an enum label
must use same enum

must use Statel.next
must use Statel.next

Structures

SystemVerilog structures provide a mechanism to collect multiple variables together under a com-
mon name. Structures are synthesizable, provided the variable types used within the structure are
synthesizable.

struct { // anonymous structure variable
logic [7:0] tag;

int a, b;
} packet_s;
typedef struct { // typed structure

logic [1:0] parity;
logic [63:0] data_word;
} data_word_t;

data word_t data;

The members of a structure can be referenced individually, or as a whole. The entire structure can
be assigned using a list of values, enclosed in *{ }. The list can contain default values for one or
more members of the structure.

data_word_t data = *{3,0};

Structures can also be defined as “packed”, indicating that the members of the structures must be
stored as contiguous bits. Packed structures are a vector, and can be used as a vector in operations.
Bits of a packed structure can be referenced by member name, or by an index.

typedef struct packed { // packed structure
logic [1:0] parity;
logic [63:0] data_word;

} data_word_t;

data word _t data in, data out, data check;
assignh data _check = data_in ™ data_out;

What is the benefit in FPGA design projects? Structures can substantially reduce the amount
of code that is required to represent complex data in a design. When a structure is defined as a
user-defined type within in a package, the same definition can be used in multiple modules, and
passed through ports from one module to another. This both simplifies working with several sig-
nals in each module, and eliminates the risk of declarations being different in each module.

Unions

SystemVerilog unions allow a single storage space to represent multiple storage formats. System-
Verilog has three types of unions: a simple union, a packed union, and a tagged union. Only
packed unions are currently synthesizable. Packed unions require that all members within the
union be packed types of the same number of bits. Packed types are vectors and packed structures.
Because all members within a packed union are the same size, it is legal to write to one member
(format) of the union, and read back the data from a different member.

typedef struct packed { // TCP data packet
logic [15:0] source_port; // 64 packed bits
logic [15:0] dest_port;
logic [31:0] sequence;

} tep_t;

typedef struct packed { // UDP data packet
logic [15:0] source_port; // 64 packed bits
logic [15:0] dest port;
logic [15:0] length;
logic [15:0] checksum

} udp_t;

union packed { // can store value as either
tcp_t tcp_data; // packet type; can read
udp_t udp_data; // value back as either

} data_packet_u; // packet type

What is the benefit in FPGA design projects? There are limited places where unions might be
beneficial, but in those circumstances unions can reduce the amount of logic gates generated by
synthesis compilers. As shown in the example above, a union can represent a hardware register
that can be used for different purposes at different times. That same code would have required
modeling two separate registers in traditional Verilog, and then carefully configuring synthesis to
create a shared register. Using a union removes the burden from the engineer of having to config-
ure synthesis compilers for shared registers.

Parameterized types

SystemVerilog extends Verilog parameter definitions, and redefinitions, to allow parametrizing
data types. For example:

module adder #(parameter type dtype = int)
(input dtype a, b,
output dtype sum);
assign sum = a + b;
endmodule

module top;
adder il (a, b, rl); // 32-bit 2-state adder
adder 12 #(dtype=logic[15:0]) (a, b, r2); // 16 bit 4-state adder
endmodule

Parameterized data types are synthesizable.

What is the benefit in FPGA design projects? As with the other user-defined types, parameter-
ized types allows modeling more functionality in few lines of code.

Shared declaration spaces

In the old Verilog language, modules were self-contained design blocks. All data types, tasks and
function used by a module had to be declared locally within the module. If the same definition
needed to be used in multiple modules, the definition had to be repeated within each module. Sys-
temVerilog extends Verilog by adding two new declaration spaces, which can be shared by any
number of design and verification blocks, packages and $unit.

Packages

User-defined packages are defined between the keywords package and endpackage. The syn-
thesizable items packages can contain are:

e parameter and localparam constant definitions

» const variable definitions

» typedef user-defined types (discussed in later in this paper)

* Fully automatic task and function definitions

* import statements from other packages

» export statements of other packages

An example package is:

package alu_pkg;
typedef enum {ADD, SUBTRACT, MULTIPLY, DIVIDE} optcode_t;
typedef struct {...} packet_t;

endpackage

The definitions within a package can be used within a design block (i.e., a module or interface) in
any of four ways, all of which are fully supported for synthesis:

» Explicit reference of a package item, using the package name and scope resolution operator.
For example:

module alu
(input alu_pkg::opcode_t opcode, ...)
» Explicit import of a package item using an import statement. For example:

module alu (...);
import alu_pkg: :packet_t;

* Implicit wildcard import of a package within a design block scope. For example:

module alu (...);
import alu_pkg::*;

What is the benefit in FPGA design projects? The use of packages can significantly reduce
redundant code by allowing tasks, functions, and user-defined types (discussed later in this paper)
to be declared once and used in many different places. Packages can reduce the risk of inconsis-
tency in duplicate code (e.g. a task written one way in one design block and differently in another
design block), and the costly risk of duplicated code being updated in one place and not in another
place as design features are added or modified. Packages also make it much easier to reuse work
done for one project in future projects, thus reducing debugging and overall time-to-market of
future projects. Some of the capabilities of packages could be mimicked in traditional \Verilog
using ‘include compiler directives, but that coding style required awkward file management and
imposed difficult file order dependencies during compilation. The use of packages eliminates the
tedious and error-prone limitations of old-style Verilog ‘include directives.

$unit

SystemVerilog provides a special, built-in package called $unit. Any declaration outside of a
named declaration space is defined in the $unit package. In the following example, the definition
for bool _t is outside of the two modules, and therefore is in the $unit declaration space.

typedef enum bit {FALSE, TRUE} bool_t;

module alu (...);
bool_t success_flag;

enéﬁédule
module decoder (...);
bool_t a ok;

endmodule
$unit can contain the same kinds of user definitions as a named package, and has the same synthe-

sis restrictions. $unit is automatically visible to all design (and verification) blocks that are com-
piled at the same time.

What is the benefit in FPGA design projects? Sutherland HDL strongly discourages the use of
$unit in any type of project. Although synthesizable, $unit can lead to spaghetti code that is diffi-
cult to debug, difficult to maintain, and difficult to reuse. Each invocation of the synthesis com-
piler creates a new $unit implicit package that is unique to that compilation. Declarations in the
$unit created by one compilation are not visible in the $unit created by another compilation. This
risk of multiple compilation units leads to file order dependencies during compilation, and often
special invocation options for simulation or synthesis compilers. $unit does not provide any bene-
fit over System\erilog packages. The use of packages instead of $unit is strongly recommended.

Data arrays

SystemVerilog extends the Verilog static array construct in several ways that are synthesizable.
The two synthesizable array types are packed arrays and fixed-size unpacked arrays (System\er-
ilog also has several types of dynamically sized arrays for use in verification code, which are not
synthesizable).

Packed arrays

SystemVerilog refers to old \Verilog bit-vector and integer types as “packed arrays”, indicating
that these types are an array of bits, packed together contiguously.

In Verilog a bit-vector had a single dimension. Bits within the vector could be referenced using a
bit-select operator.

reg [31:0] busil; // array of 32 contiguous bits
busl1l[15:7] = 87hFF; // select an 8-bit subfield
bus1[31] = 1°b1; // select a single bit

SystemVerilog allows bit-vectors (packed arrays) to be declared with multiple dimensions. A
packed array with multiple dimensions is still a vector made up of contiguous bits. That vector,
however, is now divided into subfields.

logic [3:0][7:0] bus2; // array of 32 contiguous bits

bus2[1] = 8”hFF; // select an 8-bit subfield
bus2[3][7] = 17°b1; // select a single bit

Multidimensional packed arrays and selections within multidimensional packed arrays are syn-
thesizable.

What is the benefit in FPGA design projects? Dividing a vector into subfields that can be
indexed with a single index can simplify code that frequently accesses subfields within a vector.
The code is simple to read and maintain. The risk of a coding error is reduced when compared to
using old-style Verilog part selects, where an engineer must mentally calculate and keep track of
the bit numbers that make up a subfield. On the other hand, if a design must frequently access
individual bits of a vector, then the old-style Verilog declaration is easier to use and more self-
documenting. An advantage of SystemVerilog is that it is still Verilog, and both old coding styles
and new coding styles can be freely intermixed.

Unpacked arrays

SystemVerilog refers to traditional \erilog arrays as “unpacked arrays”, indicating that each ele-
ment of the array is a separate variable or net that need not be stored contiguously. The major
enhancements to unpacked arrays that are synthesizable include:

» Arrays of user-defined types

» Copying entire arrays, or slices of arrays

» Assigning literal values to entire arrays or slices of arrays

» Passing arrays through module ports and to tasks and functions

» Array traversal foreach loop

A full description of each of these enhancements is beyond the scope of this paper. All of these
enhancements are synthesizable, but with restrictions to meet behavior that can be represented in
physical hardware.

What is the benefit in FPGA design projects? Old-style Verilog supported single and multi-
dimensional arrays, but with a major limitation. Only one element of an array could be manipu-
lated at a time. It was not possible to pass an array, or a pointer to an array, from one module to
another, or into a task or function. To copy one array into another array required writing loops that
indexed through an array and copied one element at a time. Most of the array enhancements listed
above are based on the ability to manipulate all of, or portions of, an array in a single line of code.
This new ability is another way in which SystemVerilog can significantly reduce the number of
lines of code required to model and verify complex hardware designs. The following example
illustrates how just 3 lines of code (plus the data declarations and module ports) can model a reg-
ister that represents a large number of hardware gates. This same functionality would have
required many dozens of lines of code in traditional Verilog, including a separate port and sepa-
rate assignments for each member of the uni_t structure and each element of the Payload array.
package design_types;
typedef struct {

logic [3:0] GFC;

logic [7:0] VPI;

logic [15:0] VCI;

logic CLP;

logic [2:0] T;

logic [7:0] HEC;

logic [7:0] Payload [0:47];

} uni_t; // UNI cell signal definitions
endpackage

module transmit_reg (output design_types::uni_t data reg,
input design_types::uni_t data packet,
input logic clock, resetN);
always @(posedge clock or negedge resetN)
if (resetN) data_reg <= ~“{default:0};
else data_reg <= data_packet;
endmodule

Module ports

SystemVerilog relaxes the rules on Verilog module port declarations and the data types that can be
passed through ports. The new port declaration rules that are synthesizable are:

* The internal data type connected to a module input port can be a variable type.

» Arrays and array slices can be passed through ports.

» Typed structures, typed unions and user-defined types can be passed through ports.

The following example illustrates a few of these synthesizable enhancements to module port dec-
larations.

package user_types;
typedef enum bit (FALSE, TRUE} bool t;
typedef struct { // declared in $unit space
logic [31:0] i0, i1;
logic [7:0] opcode;
} instruction_t;

endpackage

module ALU (output logic [63:0] result,
output user_types::bool_t ok,
input user_types::instruction_t 1W,
input integer a, b;
input logic clock);

What is the benefit in FPGA design projects? One important benefit to passing compound data
values such as structures and arrays is the simplification of RTL code. A design engineer can
model at a higher level of abstraction, passing large bundles of information from one module to
another using simple port declarations. Synthesis compilers can then expand this abstract, com-
pound port into the many discrete ports, automating what in traditional \Verilog required the
design engineer to do manually.

Another benefit is the use of variables on input ports. Old Verilog required that only net types
could be used on input ports. Nets can have multiple driver (with the exception of the uwire
type), which a module can “back drive” its input ports. Typically this is an unintentional design
error. Variables have a semantic restriction that they can only be assigned a value from a single
source. The input port is a source, which means any other assignment to the variable will be ille-
gal, instead of a functional bug in the design.

Casting

SystemVerilog adds a cast operator to Verilog, > (). There are three types of cast operations, all
of which are synthesizable:

» Typecasting, e.g.: sum = int”>(r * 3.1415);
» Sizecasting, e.g..sum = 16°(a + 5);
» Sign casting, e.g.: s = signed”(a) + signed’(b);

SystemVerilog also adds a dynamic cast system function, $cast, which is synthesizable.

What is the benefit in FPGA design projects? Traditional Verilog did not have a cast operator,
but, as a loosely typed language, casting could be accomplished using an assignments to a tempo-
rary variable of the target data type. The drawback of this old style was not only the extra code
required, but the risk of another engineer, perhaps in a future project, not realizing the purpose of
the temporary variable and removing it from the code.

The following example models a floating point multiplier and an integer adder in traditional Ver-
ilog. Without the use of a temporary variable, synthesis would infer a floating point adder instead
of the intended integer adder.

real r;

reg [2:0] b;
reg [31:0] a;
reg [31:0] temp;

always @(a or b or r) begin
temp = r ** b;
y = a + temp;

end

The SystemVerilog code for this same model is:

real r;
logic [2:0] b;
logic [31:0] a;
always_comb

y = a + logic [31:0]"(r ** b);

Operators

SystemVerilog adds a number of operators that are synthesizable:

Increment/decrement operators: ++ and -- and assignment operators: +=, -=, *=, /=, %=, &=,
=, N\=, <<=, >>=, <<<= and >>>=

These operators have the same synthesis restrictions as their counterpart non-assignment
operators in the Verilog language.

b += a; // same as b = b + a

for (int i; i<=7; i++)... // same as i =i + 1

Synthesis compilers might restrict the use of assignment operations within a compound
expression.

Wild equality/inequality operators: ==? and 1="?

These operators allow excluding specific bits from a comparison, similar to the Verilog

casex statement. The excluded bits are specified in the second operand using logic X, Z or
?.

it (address ==? 16°hFF??) // lower 8 ignored

Wild card operators synthesize the same as == and =, but with the some bits in the
comparison masked out, following the same synthesis rules and restrictions as the Verilog
casex statement

SystemVerilog adds several other operators to traditional Verilog, but these operators are not yet
widely supported by synthesis compilers, and therefore not discussed in this paper.

What is the benefit in FPGA design projects? As with many other SystemVerilog enhance-
ments, the primary benefits are reduced lines of code, more intuitive self-documenting code, and a
reduced risk of coding errors.

Procedural blocks

SystemVerilog enhances the Verilog always procedural block with three specialized procedural
blocks. These specialized procedural blocks indicate the designer’s intent for the type of hardware
behavior that the procedural code should represent:

* always_comb — intent is to represent combinational logic functionality
* always_latch — intent is to represent latched logic functionality
* always_ff — intentis to represent sequential logic functionality

The always_comb and always_ latch procedural blocks automatically infer a complete and
correct logic sensitivity list. The procedures also semantically enforce certain synthesis rules, one
of which is that no other procedural block can write to the same variable to which the procedural
block writes. always_ff also enforces a number of synthesis restrictions.

What is the benefit in FPGA design projects? The advantages of these specialized procedural
blocks are very important. The old-style Verilog always procedure is meant to be a general pur-
pose simulation coding block that is used in both RTL models and testbenches. It is an “anything
goes” procedure with no language restrictions. Synthesis, on the other hand, must impose a num-
ber of restrictions on the general purpose always procedure. It is not uncommon in traditional
Verilog to spend hours or days modeling and simulating complex hardware at the RTL level, only
to find out that the code won’t synthesize. By enforcing key synthesis restrictions, the System\er-
ilog specialized procedural blocks will not simulate if the block will not synthesize.

Even worse than finding out that an RTL model will not synthesize is when the RTL code does
synthesize, but not as intended. The burden is then placed on having very good verification code
that will detect the incorrect functionality, which is often followed by long hours of debugging the
cause of the problem. In traditional \Verilog, synthesis compilers had no way to know what type of
logic a designer intended. All the compiler could do was to analyze the body of the procedure and
infer (guess) what was intended. The engineer then had to manually inspect the synthesis reports
and resultant circuitry to determine if synthesis guessed correctly. The process was tedious and
error prone. With the SystemVerilog specialized procedural blocks, there is no guessing. Synthe-
sis compilers must still analyze the body of the procedure, just as with old-style Verilog. If, how-
ever, the functionality the RTL code does not match the procedure type, the synthesis compiler
can and will issue a warning message. The engineer no longer has to spend precious engineering
time inspecting the gate level circuitry to determine what synthesis inferred.

Note that these specialized procedural blocks do not force or guarantee that synthesis will gener-
ate the intended type logic. If the actual functionality within these specialized procedural blocks
does not represent the type of the procedure, synthesis will generate gate logic that represents the
actual functionality and issue a warning that the actual functionality does not match the intent
indicated by the type of procedural block.

Programming statements

SystemVerilog substantially extends the programming capabilities of traditional Verilog. Many of
these extensions are targeted towards testbench programming. Major EDA companies often place
so much marketing emphasis on the testbench capabilities that engineers overlook the fact that
SystemVerilog also contains important new programming features for modeling synthesizable

hardware. One of the more notable synthesizable enhancements to Verilog programming state-
ments is unique case and priority case decision statements. These statements address two
limitations in the old Verilog HDL.

First, traditional Verilog defined that if...else and case statements must be evaluated in source
code order. SystemVerilog does not change this rule. In hardware implementation, this would
require extra, priority encoding logic. Synthesis will optimize out this extra logic if it can deter-
mine that all branches of the decisions are mutually exclusive (unique). There are many situa-
tions, however, where synthesis cannot determine mutually exclusive behavior. The design
engineer must then add a “parallel_case” synthesis directive, called a pragma, to direct synthesis
to omit the priority encoded logic. This pragma is hidden in a comment that is ignored by simula-
tion but parsed by synthesis. For example:

case (state) //synthesis parallel_case

Second, the Verilog language does not require that a decision statement always execute a branch
of code. Should this occur, synthesis will add latches to the implementation. If the engineer knows
that the values that are not decoded can never occur, the engineer must add a “full_case” synthesis
pragma to prevent synthesis from adding the latches. Again, the pragma is specified as a com-
ment, which is ignored by simulation.

case (state) //synthesis full_case

These synthesis pragmas are fraught with dangers, and are the subject of numerous conference
papers and various engineering conferences. At the root of the dangers is that fact that, because
the pragmas are hidden in comments, simulation does not check that case statements actually
behave in the way the pragmas specify.

The unique and priority case statements instruct both simulators and synthesis compilers as
to the type of hardware intended. Tools can use this information to check that the code properly
models the desired logic. With priority case, all simulators must issue a warning message if
the case statement is evaluated and no branch is executed. With unique case, simulators must
report an error if two code branches could be true at the same time or if the case statement is eval-
uated and no branch is executed.

What is the benefit in FPGA design projects? For synthesis, there is no specific benefit. A
priority case statement turns on the ful I_case pragma, and a unique case Statement
turns on both the ful I _case and paral lel_case pragmas. The benefit is in simulation, and it
is an important benefit. As programming statements, simulation will issue warning messages,
should the functionality of the case statement not behave as full case or parallel case. These warn-
ing messages can save untold hours of debugging unintended behavior in a post-synthesis gate-
level design. Or, worse, bugs in a completed and shipped product.

Interface Ports

SystemVerilog adds interface ports to Verilog. An interface port is a compound port type that can
include data type declarations (both nets and variables), user-defined methods, and procedural
code. The syntax, semantics, and capabilities of interfaces is a large topic that cannot be addressed
in this paper, due to space limitations. In brief, interfaces provide a means for designers to central-
ize the definition of a bus, as opposed to having the definition scattered in several modules

throughout the design. Synthesis can then distribute the bus hardware appropriately throughout
the design.

What is the benefit in FPGA design projects? The value of interface ports depends on the type
of design and whether a communication bus protocol is used within the design. Sutherland HDL’s
experience is that interface ports have little advantage in most types of designs, in part because
synthesis compilers only support a subset of interface port capabilities.

Synthesis Support

All of the constructs presented in this paper are supported by the major FPGA synthesis compil-
ers: Synopsys Synplify-Pro, Synopsys DC, and Mentor Precision. These tools do impose restric-
tions on some of the constructs. There is some variance in these restrictions between these
commercial tools. FPGA design engineers using any of these commercial synthesis compilers can
— and should — take advantage of these SystemVerilog enhancements to traditional Verilog.

At the time this paper was written, the support for System\erilog in proprietary synthesis compil-
ers provided by FPGA vendors is severely lacking. Xilinx supports a very limited subset of Sys-
temVerilog, but has plans for increasing this support in the near future. Altera also has very
limited support for SystemVerilog, and has not made plans for further support public. FPGA
design engineers who are using proprietary FPGA synthesis compilers will need to wait for better
support, in order to benefit from SystemVerilog’s enhancements to traditional \erilog.

Summary

SystemVerilog adds a large set of enhancements to the traditional Verilog Hardware Design Lan-
guage. Some of these enhancements are for verification, while others are for modeling hardware.
The focus of this paper has been on the synthesizable hardware modeling features in SystemVer-
ilog. The benefits of the synthesizable enhancements that SystemVerilog adds to the traditional
Verilog HDL have been discussed. These language features can reduce the amount of code
required to model large, complex designs and at the same time eliminate or detect coding errors
that appear to simulate correctly, but could result in an incorrect or non-optimal synthesized hard-
ware design. There are many advantages to using these System\erilog enhancements in FPGA
design work.

A reason for not yet adopting these synthesizable SystemVerilog features has also been discussed.
SystemVerilog is well supported by major commercial FPGA synthesis compilers, but current
support in proprietary FPGA synthesis compilers is somewhat limited.

The answer to the question, “What, if anything, in SystemVerilog will help me with FPGA-based
designs?” is not a simple one. SystemVerilog has a great deal to offer for FPGA design, but the
synthesis compiler you are using might not support some of those features — at least not at the
time this paper was prepared.

References and resources

[1] “IEEE 1800-2009 standard for the SystemVerilog Hardware Description and Verification
Language”, IEEE, Pascataway, New Jersey, 2009. ISBN 978-0-738-16130-3 (PDF version).

[2] “IEEE 1800-2005 standard for the SystemVerilog Hardware Description and Verification
Language™, IEEE, Pascataway, New Jersey, 2005. ISBN 0- 7381-4811-3.

[3] ““1364-2005 IEEE Standard Verilog Hardware Description Language”, IEEE, Pascataway,
New Jersey. Copyright 2005. ISBN:0-7381-2827-9.

[4] *“1364.1-2002 IEEE Standard for Verilog Register Transfer Level Synthesis™, IEEE, Pascat-
away, New Jersey. Copyright 2002. ISBN:0-7381-3502-X.

[5] ““SystemVerilog for Design, second edition”, by Sutherland, Davidmann, and Flake. published
by Springer, Boston, Massachusetts, 2006. ISBN: 978-0-387-33399-1.

[6] “A Proposal for a Standard Synthesizable Subset for SystemVerilog-2005: What the IEEE
Failed to Define”, by Stuart Sutherland. presented at DVCon, March 2006. Available at http://
www.sutherland-hdl.com/papers/2006-DVCon_SystemVerilog_synthesis_subset_paper.pdf

[7] ““SystemVerilog: A Design & Synthesis Perspective, by Karen Pieper. Presented at the 2006
Synopsys Users Group Conference, Boston, Massachusetts.

[8] ““Towards a Practical Design Methodology with SystemVerilog Interfaces and Modports™, by
Jonathan Bromley. Presented at the 2007 Design and Verification Conference and Exhibition
(DVCon), San Jose, California.

[9] ““Seamless Refinement from Transaction Level to RTL using SystemVerilog Interfaces™, by
Jonathan Bromley. Presented at the 2008 Synopsys Users Group Conference, San Jose, Cali-
fornia.

[10]*“Building Polymorphic Modules with Synthesizable SystemVerilog Constructs”, by B. Hook.
Presented at the 2008 Synopsys Users Group Conference, San Jose, California.

[11]“SystemVerilog Saves the Day—the Evil Twins are Defeated! unique and priority”” are the
new Heroes”, paper by Stuart Sutherland, Synopsys Users Group (SNUG) conference, March
2005. Available at http://www.sutherland-hdl.com/papers/2005-SNUG-
paper_SystemVerilog_unique_and_priority.pdf

