
February 28 – March 1, 2012

Keeping Up with Chip — the Proposed
SystemVerilog 2012 Standard Makes

Verifying Ever-increasing Design
Complexity More Efficient

Stuart Sutherland, Sutherland HDL, Inc.
Tom Fitzpatrick, Mentor Graphics Corporation

LHD
Sutherland

www.sutherland-hdl.com
Training Engineers to be SystemVerilog wizards

2

What’s New in SystemVerilog-2012 – ©2012 Stuart Sutherland – Sutherland HDL, Inc. – www.sutherland-hdl.com 2 of 24

About the Authors
 Stuart Sutherland
 Has been using Verilog since 1988
 Involved in IEEE Verilog/SystemVerilog standards since inception
 Technical editor of every generation of Verilog and SystemVerilog

Language Reference Manuals
 Author of books on Verilog, SystemVerilog and Verilog PLI

 Tom Fitzpatrick
 Verification Technologist at Mentor Graphics Corp
 20+ of design and verification experience
 Involved in the standardization of SystemVerilog
 One of the original designers of AVM and OVM
 Editor of Verification Horizons, a quarterly newsletter
 Published articles and papers about verification methodologies

Sutherland HDL helps
engineers become true
SystemVerilog wizards!

3

What’s New in SystemVerilog-2012 – ©2012 Stuart Sutherland – Sutherland HDL, Inc. – www.sutherland-hdl.com 3 of 24

What We Will Discuss…

 A brief history of the evolution of Verilog and SystemVerilog
 And why we need a 2012 version…

 Status of the proposed SystemVerilog-2012 standard
 What has been done
 When it will be available

 Overview of major new features
 There’s a lot!

 Wrap-up and Q&A
 Please jot down your questions

and save them for Q&A at the end

4

What’s New in SystemVerilog-2012 – ©2012 Stuart Sutherland – Sutherland HDL, Inc. – www.sutherland-hdl.com 4 of 24

A Brief History Lesson…

 Verilog (IEEE standard 1364)
 Began in 1983 as a proprietary language
 Opened to the public in 1992
 Became an IEEE standard in 1995 (updated in 2001 and 2005)
 Between 1983 and 2005 design sizes increased dramatically!

 SystemVerilog (IEEE standard 1800)
 Originally intended to be the 2005 update to Verilog
 Contains hundreds of enhancements and extensions to Verilog
 Published in 2005 as a separate document
 Officially superseded Verilog in 2009

For a summary of new features added in SV-2009, see the DAC-2009
2-part presentation by Stuart Sutherland and Cliff Cummings

(available at www.sutherland-hdl.com and www.sunburst-design.com)

5

What’s New in SystemVerilog-2012 – ©2012 Stuart Sutherland – Sutherland HDL, Inc. – www.sutherland-hdl.com 5 of 24

Mile High View of
SystemVerilog-2012
 Design size and complexity continues to grow
 And grow and grow…

 SystemVerilog is keeping pace (keeping up with Chip – your chip!)
 IEEE began work on SV-2012 as soon as SV-2009 was complete
 Work on specifying SV-2012 was finished in January 2012
 IEEE balloting process began mid February 2012

 In a nut shell…
 31 new features added to the language
 60 clarifications to existing language features
 71 corrections (typos, English grammar, punctuation, etc.)
 Dozens of minor editorial corrections (font usage, punctuation)

The focus of this paper is on the 31 new language features, and how those features
can help make writing complex verification testbenches simpler or more efficient

6

What’s New in SystemVerilog-2012 – ©2012 Stuart Sutherland – Sutherland HDL, Inc. – www.sutherland-hdl.com 6 of 24

Typed new() Constructors

 Before…
 The object handle type and the new() type must be identical
 To create a child object and assign to a parent handle took 3 steps

 SystemVerilog-2012
 The call to new() can be “typed” using its class name
 The return must be assigned to a handle of the same class type or

a parent/grandparent of that type
base_trans t_base = reset_trans::new;

Mantis 3001

• Fewer lines of code
• Self-documenting code
• Less risk of obscure errors

class base_trans; ... endclass

class reset_trans extends base_trans;... endclass

base_trans t_base;
reset_trans t_reset t_reset = new;
t_base = t_reset;

3 lines of code

7

What’s New in SystemVerilog-2012 – ©2012 Stuart Sutherland – Sutherland HDL, Inc. – www.sutherland-hdl.com 7 of 24

Nonblocking Assignments
to Class Properties
 Before…
 Class properties could not be assigned using nonblocking assigns
 Nonblocking assignments are useful in verification code
 Can prevent race conditions between the testbench and the DUT

 SystemVerilog-2012
 Removes the restriction about using nonblocking assignments
 Allows verification engineers to take full advantage of

SystemVerilog’s event scheduling rules
class base_trans;

int data;
bit resetN;

endclass

initial begin
t.resetN <= 0; // assert reset in NBA event region
...

Mantis 2112

Nonblocking assignment used to ensure
DUT won’t miss a power-up reset

8

What’s New in SystemVerilog-2012 – ©2012 Stuart Sutherland – Sutherland HDL, Inc. – www.sutherland-hdl.com 8 of 24

Multiple Inheritance

 Before…
 A class could only be extended from a single parent
 Can require a more awkward, difficult to re-use coding style

 SystemVerilog-2012
 Allows a child class to inherit from more than one parent class
 Uses Java-like interface classes to handle multiple inheritance

interface class Put;
pure virtual function void put(int a);

endclass

interface class Get;
pure virtual function int get();

endclass

class Fifo implements Put, Get;
... // implementations of inherited methods

endclass

Mantis 1356

• An “interface” class can contain:
• Parameter constants
• User-defined types (typedefs)
• Pure virtual method prototypes

• A regular class can “implement”
one or more interface classes

This is BIG!

Inherit prototypes from multiple parents

The full paper discusses some
ways this new feature might be

useful for a UVM testbench

9

What’s New in SystemVerilog-2012 – ©2012 Stuart Sutherland – Sutherland HDL, Inc. – www.sutherland-hdl.com 9 of 24

Soft Constraints

 Before…
 All randomization constraints were “hard” constraints
 An error results if a constraint conflicts with another constraint

 SystemVerilog-2012
 Constraints can be specified as “soft”
 Ignored if conflicts with another constraint

class Packet;
rand int pkt_size;
constraint size {soft pkt_size inside {32,1024};}

endclass

Packet p = new();
p.randomize with {pkt_size == 512;}

Mantis 2987

Example:
• A transaction class has constraints, but a specific test requires a different constraint

• An error will occur if the specific constraint conflicts with the built-in constraint
• The verification engineer writing the test must write extra code to avoid potential conflicts

The randomize with() constraint takes
precedence over the soft constraint,

instead of resulting in a run-time error

This is also a big enhancement!

10

What’s New in SystemVerilog-2012 – ©2012 Stuart Sutherland – Sutherland HDL, Inc. – www.sutherland-hdl.com 10 of 24

Uniqueness Constraints

 Before…
 There was no simple way to specify constraints so that several

variables — or all the members of an array — had different
random values and none had the same value

 SystemVerilog-2012
 Adds a uniqueness constraint that where all variables in a list or an

array receive unique values
class Transaction;
rand int a, b, c;
rand byte data_array[16];

constraint c1 { unique {a,b,c}; }
constraint c2 { unique {data_array}; }

endclass

Mantis 3028

Constraint c2 ensures that when
random values are generated, every

element of data_array will have a
different value

Constraint c1 ensures that, when
random values are generated, the

values of a, b and c will be different

11

What’s New in SystemVerilog-2012 – ©2012 Stuart Sutherland – Sutherland HDL, Inc. – www.sutherland-hdl.com 11 of 24

Parameterized Methods /
Parameterized Types
 Before…
 Module and class parameters could be redefined for each instance
 Task/function instances could not have different parameter values
 Required writing many versions of the same task or function

 SystemVerilog-2012
 Allows static class methods to be “specialized” with unique

parameter values each time the method is used
virtual class C #(parameter DECODE_W, localparam ENCODE_W=$clog2(DECODE_W));

static function [DECODE_W-1:0] decoder_f (input [ENCODE_W-1:0] EncodeIn);
...

endfunction
endclass

module test;
decoder_1 = C#(4)::decoder_f(2'b11);
decoder_2 = C#(8)::decoder_f(3'b100);
...

Mantis 696

Redefine DECODE_W value for each instance of decoder_f method

Mantis 1504

Each instance of a parameterized
user-defined type can be specialized

in a similar way

Strictly speaking, these are “clarifications” in the standard, not new features

12

What’s New in SystemVerilog-2012 – ©2012 Stuart Sutherland – Sutherland HDL, Inc. – www.sutherland-hdl.com 12 of 24

Explicit Untyped Arguments
In let Macros
 Before…
 Any untyped formal arguments in let macros had to be listed first
 Not consistent with the syntax of property and sequence definitions

 SystemVerilog-2012
 A let formal argument in any position can be specified as untyped
 Consistent syntax with property and sequence definitions
let OK(event clk, untyped a) = assert ($stable(a,clk));

module test;
logic [31:0] d;
real r;
bit clock;
task do_something;

OK(@(posedge clock), d) ...
OK(@(negedge clock), r); ...

endtask
endmodule

Mantis 2835

formal argument “a” is untyped, and takes
on the type of the value passed in to it

13

What’s New in SystemVerilog-2012 – ©2012 Stuart Sutherland – Sutherland HDL, Inc. – www.sutherland-hdl.com 13 of 24

Var Type() in For-Loops /
Ref Args with Dynamic Arrays
 Before…
 The data type of a for-loop iterator had to be hard-coded

 SystemVerilog-2012
 The type() function can be used to declare the iterator variable
paramenter SIZE=64;
logic [SIZE-1:0] a, b;

for (var type({a,b}) i; i<=255; i++) ...

 Before…
 A task/function ref argument could only point to fixed-sized arrays

 SystemVerilog-2012
 Adds ability for ref arguments to point to dynamically-sized arrays

Mantis 2901

• If SIZE is not redefined, i will be
declared as a logic [128:0] type

• If SIZE is redefined, variable i will
adjust accordingly

Mantis 2929

task put_data (input value, ref d[$]);
d.push_back(value);

endtask

int data_q[$];
always @(posedge clock)
put_data(data, data_q);pass a queue to a task

14

What’s New in SystemVerilog-2012 – ©2012 Stuart Sutherland – Sutherland HDL, Inc. – www.sutherland-hdl.com 14 of 24

$countbits System Function /
`begin_keywords 1800-2012
 Before…
 The $countones function returned the number of bits set to 1
 There was no easy way to count the number of bits set to 0, X or Z

 SystemVerilog-2012
 Adds a $countbits function that returns the number of bits set to a

list of values

 Before…
 The words implements, interconnect, nettype, and soft

had no special meaning in the language
 SystemVerilog-2012
 Reserves these four words as keywords
 Adds an 1800-2012 argument to the `begin_keywords directive

Mantis 2476

Existing code that uses any of these new keywords should specify `begin_keywords 1800-2009

Mantis 3750

$error("data has %0d bits with X or Z",
$countbits (data, 'x, 'z));

15

What’s New in SystemVerilog-2012 – ©2012 Stuart Sutherland – Sutherland HDL, Inc. – www.sutherland-hdl.com 15 of 24

User-Defined Net Types /
Typeless Netlists

 Before…
 Engineers could only create user-defined types based on variables

 SystemVerilog-2012
 Adds ability to create user-defined net types based on net types
 Can define custom nets for 2-state and floating point values
 Can define custom resolution functions for multi-driver logic

 Before…
 Netlists had to be hardcoded to only use specific net types

 SystemVerilog-2012
 Adds a generic net that infers its type from lower-level connections
 Enables using configurations to select design versions (e.g. digital

or analog versions of a module) without modifying the netlist

Mantis 3398

Mantis 3724
These new features are important

for mixed signal designs!

16

What’s New in SystemVerilog-2012 – ©2012 Stuart Sutherland – Sutherland HDL, Inc. – www.sutherland-hdl.com 16 of 24

Coverpoint Variables /
bins…with() Construct /
Coverage Functions
 Before…
 Coverpoint labels could not be used in expressions
 Coverage expressions could not call functions
 Coverage bins could not easily exclude specific values

 SystemVerilog-2012
 Coverpoint labels are variables that can be used in expressions
 Coverage expressions can call functions (eliminates duplicate

code used by multiple coverpoints)
 A bins...with() construct can be used to exclude values in a bin that

would not be of interest in a test
a: coverpoint data {
bins mod16[] = {[0:255]} with (item % 16 == 0);

}

Mantis 2506

mod16 only tracks values that
are evenly divisible by 16

(“item” is a variable that is
built into bins…with())

These 3 enhancements
can help improve run-

time performance!

17

What’s New in SystemVerilog-2012 – ©2012 Stuart Sutherland – Sutherland HDL, Inc. – www.sutherland-hdl.com 17 of 24

Assertion Data Types /
Sampled Value Data Types
 Before…
 Assertions were limited to testing simple, integral values

 SystemVerilog-2012
 Assertions can now test real (floating point) values and dynamic

arrays (such as strings and queues) and static class properties

 Before…
 Value sampling functions, such as $sample() were limited to

testing simple, integral values
 SystemVerilog-2012
 Value sampling functions can now test real values and dynamic

arrays (e.g.: strings and queues) and static class properties

Mantis 2328

byte q[$];
property p1;
$rose(write) |-> q[0];

endproperty

A dynamic queue array

Mantis 2353

Mantis 3213

18

What’s New in SystemVerilog-2012 – ©2012 Stuart Sutherland – Sutherland HDL, Inc. – www.sutherland-hdl.com 18 of 24

Global Clock Resolution

 Before…
 There could only be a single global clock definition, which

encompassed the entire design
 Made it difficult to verify designs with multiple clock domains

 SystemVerilog-2012
 Each hierarchy scope can have a different global clock
 Applies to all sub-scopes until a new global clock is defined

module master (...);
...
global clocking @(posedge m_clock);
endclocking
...
property @($global_clock)
...
endproperty

...
endmodule

Mantis 3069

module slave (...);
...
global clocking @(posedge s_clock);
endclocking
...
property @($global_clock)
...

endproperty
...

endmodule

NOTE: This enhancement is not backward compatible with SystemVerilog-2009

19

What’s New in SystemVerilog-2012 – ©2012 Stuart Sutherland – Sutherland HDL, Inc. – www.sutherland-hdl.com 19 of 24

Inferred Clocks in Sequences /
Sequence Method Expressions
 Before…
 An assertion sequence only infers a clock when used in a property

 SystemVerilog-2012
 Sequences can infer a clock in other contexts

 Before…
 The triggered and matched sequence methods could only be used

on instances of a sequence
 SystemVerilog-2012
 Sequence methods can also be used with a sequence expression

Mantis 2412

Mantis 3191

checker check_mutex(input sequence s1,
input cond,
event clk=$inferred_clock);

default clocking cb @clk; endclocking
let r = s1.triggered;
a1: assert property (cond |=> r);

endchecker

Not allowed in SV-2009

20

What’s New in SystemVerilog-2012 – ©2012 Stuart Sutherland – Sutherland HDL, Inc. – www.sutherland-hdl.com 20 of 24

Final Deferred Immediate
Assertions
 Before…
 Immediate assertions can have glitches within a moment in time
 SystemVerilog-2009’s deferred immediate assertions reduce the

risk of glitches but do not eliminate them

 SystemVerilog-2012
 Adds final deferred immediate assertions that eliminate all glitches

Mantis 3206

always_comb
A2: assert #0 (!$isunknown state) else begin

err_cnt++;
$error("bad state");

end

• Processed in the Reactive
event region

• Can execute any type of
programming statements

Deferred Immediate Assertion

• Processed in the Postponed
event region

• Can only execute a single
print statement

• Cannot contain begin…end

always_comb
A3: assert final (!$isunknown state)

else $error("bad state");

Final Deferred Immediate Assertion

21

What’s New in SystemVerilog-2012 – ©2012 Stuart Sutherland – Sutherland HDL, Inc. – www.sutherland-hdl.com 21 of 24

Fine-grained Assertion Control

 Before…
 Could only control assertions with a medium level of granularity

using $assertkill, $assertoff, and $asserton system tasks
 Could specify a specific assertion or a specific hierarchy scope
 Could not distinguish assert, assume, cover, expect assertions
 Could not distinguish concurrent vs. immediate assertions
 Could not lock out specific assertions from global controls

 SystemVerilog-2012
 Adds a new $assertcontrol system task that provides the fine level

of control granularity not possible before
enum { LOCK=1, UNLOCK=2, ON=3, OFF=4, KILL=5,

CONCURRENT=1, IMMEDIATE=2, D_IMMEDIATE=12,
EXPECT=16, ASSERT=1, COVER=2, ASSUME=4

} controls;

$assertcontrol(OFF, CONCURRENT, COVER|ASSUME, 0);

Mantis 3295

22

What’s New in SystemVerilog-2012 – ©2012 Stuart Sutherland – Sutherland HDL, Inc. – www.sutherland-hdl.com 22 of 24

Checker Output Arguments /
More Checker Programming
 Before…
 A checker could instantiate other checkers, but checkers could

only have input arguments
 Limited ability to build up complex checkers from other checkers

 SystemVerilog-2012
 Checkers can have output arguments, similar to tasks or modules

 Before…
 Checkers supported a very limited set of programming statements

 SystemVerilog-2012
 Checkers now support:

Mantis 2093

Mantis 3033

 always_comb, always_latch, always_ff
 Blocking assignments
 Conditional statements
 Looping statements

 Immediate assertions
 Task calls
 let declarations
 Continuous assignment of checker variables

NOTE: This enhancement is not backward compatible with SV-2009 (always within let now illegal)

23

What’s New in SystemVerilog-2012 – ©2012 Stuart Sutherland – Sutherland HDL, Inc. – www.sutherland-hdl.com 23 of 24

VPI Enhancements

 Before…
 The SystemVerilog Verification Procedural Interface (VPI)

supported constructs in the SystemVerilog-2009 standard
 SystemVerilog-2012
 The VPI was enhanced to support the new features added in

SystemVerilog-2012
 VPI support for soft constraints
 VPI access added to the built-in process class
 VPI transition to typespecs added to named events
 VPI join type property added to the Scope diagram

 Many other minor enhancements and clarifications were made to
the SystemVeriog-2012 VPI

Mantis 3116

Mantis 3188

Mantis 3193

Mantis 3884

24

What’s New in SystemVerilog-2012 – ©2012 Stuart Sutherland – Sutherland HDL, Inc. – www.sutherland-hdl.com 24 of 24

Summary –
SystemVerilog-2012 adds 31 New Features
 OOP enhancements
 Typed new() constructors
 Nonblocking assignments
 Multiple inheritance

 Constrained random enhancements
 Soft constraints
 Uniqueness constraints

 Programming enhancements
 Parameterized tasks and functions
 Parameterized user-defined types
 Untyped arguments in let constructs
 var type() in for-loops
 ref arguments with dynamic arrays
 $countbits system function
 `begin_keywords 1800-2012

 Mixed-signal enhancements
 User-defined net types
 Typeless netlist connections

 Coverage enhancements
 Coverpoint variables
 bins…with() expressions
 Coverage functions

 Assertion enhancements
 More assertion data types
 More sampled value data types
 Testing static class properties
 Global clock redefined
 Inferred clocks in sequences
 Sequence method expressions
 Final deferred immediate assertions
 Fine-grained assertion control

 Checker enhancements
 Checker Output Arguments
 More Checker Programming

 VPI enhancements
 4+ extensions to support new features

 SystemVerilog-2012 is in the process of being approved by the IEEE
 EDA vendors are already implementing these new features!

