
Standard Gotchas
Subtleties in the Verilog and SystemVerilog

Standards That Every Engineer Should Know!

Don Mills
LCDM Engineering
Chandler, Arizona
mills@lcdm-eng.com

Stuart Sutherland
Sutherland HDL, Inc.

Portland, Oregon
stuart@sutherland.com

More

Chris Spear
Synopsys, Inc.

Marlboro, Massachusetts
chris@spear.net

2 of 18

Don Don MillsMills
LCDM Engineering

Stu Stu SutherlandSutherland
Sutherland HDL

Chris SpearChris Spear
Synopsys

Presentation Overview

What is a “gotcha”?

Why do standards have gotchas?

What’s covered in this paper

Several example gotchas,
and how to avoid them!

Summary

3 of 18

Don Don MillsMills
LCDM Engineering

Stu Stu SutherlandSutherland
Sutherland HDL

Chris SpearChris Spear
Synopsys

What Is A Gotcha?

In programming, a “gotcha” is a legal language construct that
does not do what the designer expects

A Classic C programming Gotcha...

if (day = 15)
/* process payroll */

If middle of the month, then pay employees…If middle of the month, then pay employees…

GOTCHA! This code will assign the value of 15 to
day, and then if day is not zero, pay the employees
GOTCHA! This code will assign the value of 15 to
day, and then if day is not zero, pay the employees

Engineers need to know how to recognize and
avoid gotchas in hardware modeling!

Gotcha!Gotcha!

In hardware design and verification, most gotchas will simulate,
but give undesired results

Gotchas can be difficult to find and debug
A gotcha can be disastrous if not found before tape-out!

if (day = = 15) ...

4 of 18

Don Don MillsMills
LCDM Engineering

Stu Stu SutherlandSutherland
Sutherland HDL

Chris SpearChris Spear
Synopsys

Why Do
Standards Have Gotchas?

Standards developers are idiots
Users of standards are idiots

if (day = 15)

/* process payroll */

while (data = fscanf(…))

/* read in data until it is 0 */

A dumb way to use “assignment
within an expression”
A dumb way to use “assignment
within an expression”

A clever way to use “assignment
within an expression”
A clever way to use “assignment
within an expression”

Languages can be used the right way, or the wrong way
Gotcha!Gotcha!

Verilog and SystemVerilog allow designers to
prove what will — and what will not — work correctly

Models that won't work correctly need to be legal syntax

Hardware models are not just simulated, they are synthesized,
analyzed, emulated, prototyped, formally proved, …

Each type of tool needs different information from the language

5 of 18

Don Don MillsMills
LCDM Engineering

Stu Stu SutherlandSutherland
Sutherland HDL

Chris SpearChris Spear
Synopsys

Is This a Verilog Gotcha?

Is the classic C gotcha also a gotcha in Verilog?

always @(state)
if (state = LOAD)
...

Legal or Illegal?
Illegal! Verilog does not allow
assignment statements inside of expressions

If you don’t know the answer, then
you really need to read this paper!
(We will answer this question at the end of
our presentation...)

always @(state)
if (state = LOAD)
...

Legal or Illegal?

What about in SystemVerilog?
SystemVerilog extends Verilog with more C and C++ features

6 of 18

Don Don MillsMills
LCDM Engineering

Stu Stu SutherlandSutherland
Sutherland HDL

Chris SpearChris Spear
Synopsys

Standard Gotcha's, Part One
(SNUG-Boston 2006)

Detailed descriptions of 57 gotchas…and how to avoid them!
• Case sensitivity
• Implicit net declarations
• Escaped identifiers in hierarchy paths
• Verification of dynamic data
• Variables declared in unnamed blocks
• Hierarchical references to package items
• Variables not dumped to VCD files
• Shared variables in modules
• Shared variables in interfaces, packages
• Shared variables in tasks and functions
• Importing enum types from packages
• Importing from multiple packages
• Resetting 2-state models
• Locked state machines
• Hidden design problems
• Out-of-bounds indication lost
• Signed versus unsigned literal integers
• Default base of literal integers
• Size mismatch in literal integers

• Literal size mismatch in assignments
• Z extension backward compatibility
• Filling vectors
• Passing real types through ports
• Port connection rules
• Back-driven input ports
• Self- & context-determined operations
• Operation size and sign extension
• Signed math operations
• Bit and part select operations
• Increment and decrement operations
• Pre-increment versus post-increment
• Multiple read/writes in one statement
• Operator evaluation short circuiting
• Assignments in expressions
• Procedural block activation
• Combinational logic sensitivity lists
• Arrays in sensitivity lists
• Vectors in sensitivity lists

• Operations in sensitivity lists
• Sequential blocks with begin...end
• Sequential blocks with partial reset
• Blocking assigns in sequential blocks
• Evaluation of true/false on 4-state values
• Not operator versus invert operator
• Nested if...else blocks
• Casez/casex masks in case expressions
• Incomplete or redundant decisions
• Out-of-bounds in enumerated types
• Statements that hide design problems
• Simulation versus synthesis mismatches
• Multiple levels of same virtual method
• Event trigger race conditions
• Using semaphores for synchronization
• Using mailboxes for synchronization
• Coverage reporting
• $unit declarations
• Compiling $unit

7 of 18

Don Don MillsMills
LCDM Engineering

Stu Stu SutherlandSutherland
Sutherland HDL

Chris SpearChris Spear
Synopsys

Standard Gotcha's, Part Two
(SNUG-San Jose 2007)

38 additional gotchas…and how to avoid them!
• Overlapped decision statements
• Full_case or unique case

synthesis gotcha
• Combinational logic hidden storage
• Nonblocking assignments

in comb. logic
• Memory models that can't be loaded
• Default of 1-bit internal nets
• Port direction coercion
• Compile errors with clocking blocks
• Misplaced semicolons on begin...end
• Misplaced semicolons in if...else
• Misplaced semicolons in loops
• Unintentional infintite loops
• Locked simulation with

concurrent loops
• Using loop variables outside the loop

• Summing a subset of an array
• Task/function arguments

with defaults
• Static task/function gotcha
• Local variables error
• Program statements in classes
• Using interfaces with classes
• Mailboxes that forget

stored values
• Passing handles to functions
• Creating arrays of objects
• Some variables won't randomize
• Boolean randomization constraints

that do weird things
• Undectected randomization

failures
• Unwanted negative random values

• Coverage is always 0%
• Coverage report results

get lumped together
• Covergroup directions that

are not what they seem
• Assertion pass statements

execute at wrong time
• Assertion fail statements

execute at wrong time
• Procedural assertion gotcha
• Default time units
• Package chaining
• Non-standard keywords
• Array literals versus

concatenations
• Declaring floating point ports

(The highlighted gotchas are the ones we will discuss in this presentation)(The highlighted gotchas are the ones we will discuss in this presentation)

8 of 18

Don Don MillsMills
LCDM Engineering

Stu Stu SutherlandSutherland
Sutherland HDL

Chris SpearChris Spear
Synopsys

A Synthesis Gotcha: Defaults
with Full_case or Unique Case

Default assignments before a case statement simplifies code
Using full_case or unique case can avoid unintended latches

But… combining the two styles is a gotcha!
always_comb begin

load_s = 1'b0;
load_f = 1'b0;
load_pc = 1'b0;
inc_pc = 1'b0;
set_br = 1'b0;
dmem_rdN = 1'b0;
dmem_wrN = 1'b0;
case (state) // synopsys full_case
state1 : inc_pc = 1'b1;
state2 : set_br = 1'b1;
...

endcase
end

To avoid this Gotcha… Don't mix default assignments with
full_case or unique case decisions

only values different than default
are listed in case statement
(could be dozens of branches)

only values different than default
are listed in case statement
(could be dozens of branches)

default values for
combinational outputs

(could be several dozen outputs)

default values for
combinational outputs

(could be several dozen outputs)

DC treats a full_case or unique case
statement as fully self-contained

(any assignments to the same variables
before the case statement are ignored!)

DC treats a full_case or unique case
statement as fully self-contained

(any assignments to the same variables
before the case statement are ignored!)

Gotcha!Gotcha!

9 of 18

Don Don MillsMills
LCDM Engineering

Stu Stu SutherlandSutherland
Sutherland HDL

Chris SpearChris Spear
Synopsys

Gotcha:
Unintentional Infinite Loops

For-loops typically exit when a control variable exceeds some limit
But…it is possible to declare variables that cannot hold the
loop exit value

integer sb[0:15];
reg [3:0] i;
initial begin
... // do lots of tests...
for (i=0; i<=15; i=i+1) begin

$display("sb[%0d]=%0d", i, sb[i]);
end
$finish;

end

Why doesn't my test
ever finish?

To avoid this Gotcha…
Use the int type for for-loop control variable
Use SystemVerilog style for-loops

Makes the loop variable type more obvious

Gotcha!Gotcha!

for (int i=0; i<=15; i=i+1)

10 of 18

Don Don MillsMills
LCDM Engineering

Stu Stu SutherlandSutherland
Sutherland HDL

Chris SpearChris Spear
Synopsys

Gotcha: Using Loop Variables
Outside of the Loop

For-loop variables can be declared two different ways
Outside of the loop (Verilog style)
As part of the loop (SystemVerilog style)

But…it is a local variable that cannot be used outside the loop!

integer a[0:31], b[0:31];
initial begin
for (int i=0; i<=31; i++) begin
if (a[i] != b[i]) break;

end
if (i < 32)
$display("Mismatch at %0d", i);

end

To avoid this Gotcha…
When the loop control variable needs to be used outside of the
loop, use the Verilog style of loop control variable

integer a[0:31], b[0:31];
int i;
initial begin
for (i=0; i<=31; i=i+1) begin
if (a[i] != b[i]) break;

end
if (i < 32)
$display("Mismatch at %0d", i);

end

Verilog Style for Loop VariableVerilog Style for Loop Variable SystemVerilog Style for Loop VariableSystemVerilog Style for Loop Variable

Gotcha!Gotcha!

Variables declared as part of the
for-loop are local to just the loop
Variables declared as part of the
for-loop are local to just the loop

11 of 18

Don Don MillsMills
LCDM Engineering

Stu Stu SutherlandSutherland
Sutherland HDL

Chris SpearChris Spear
Synopsys

Gotcha: Using Programming
Statements in Classes

Classes enable writing Object Oriented re-usable testbenches
But…classes cannot directly execute programming statements

Classes contain "methods" that are called from procedural code

class Foo;
int data;
function int get (...);

...
endfunction
task put (...);
...

endtask
endclass

To avoid this Gotcha…
See the next slide

class Bar;
Foo f = new;
f.data = 3;

endclass

Definition of an objectDefinition of an object

Instantiate object Foo
and initialize it's data

Instantiate object Foo
and initialize it's data

Definition of another objectDefinition of another object

A class cannot directly execute
programming statements

A class cannot directly execute
programming statements

Gotcha!Gotcha!

12 of 18

Don Don MillsMills
LCDM Engineering

Stu Stu SutherlandSutherland
Sutherland HDL

Chris SpearChris Spear
Synopsys

Using Programming Statements
in Classes (continued)

Classes enable writing Object Oriented re-usable testbenches
But…classes cannot directly execute programming statements

class Foo;
int data;
function new (int d);
this.data = d;

endfunction
function int get (...);
...

endfunction
task put (...);
...

endtask
endclass

Use "methods" to hold class programming statements
The new method can be used to initialize class variables

To avoid this Gotcha…

Definition of an objectDefinition of an object

class Bar;
Foo f = new(3);
f.data = 3;

endclass
Initialize Foo's data

using its new method
instead of executing a

programming
statement!

Initialize Foo's data
using its new method
instead of executing a

programming
statement!

Definition of another objectDefinition of another object

The assignment
statement is
in a method

The assignment
statement is
in a method

13 of 18

Don Don MillsMills
LCDM Engineering

Stu Stu SutherlandSutherland
Sutherland HDL

Chris SpearChris Spear
Synopsys

Gotcha: Randomization
Constraints That Don't Work

Constraints are used to set limits on randomly generated values
But…multiple Boolean constraints may limit values differently
than intended

class bad1;
rand bit [7:0] lo, med, hi;
constraint increasing { lo < med < hi; }

endclass

To avoid this Gotcha…
Constraints involving multiple
Boolean operations should be
broken into multiple statements

Gotcha!Gotcha!

Intent: Constrain values such
that lo is less than med, and

med is less than hi

Intent: Constrain values such
that lo is less than med, and

med is less than hi

Constrains hi to be greater than result
of true/false test of "lo < med"
• lo and med are not constrained
• Result of true/false test is 0 or 1

Constrains hi to be greater than result
of true/false test of "lo < med"
• lo and med are not constrained
• Result of true/false test is 0 or 1

Sample of values generated:
lo = 20, med = 224, hi = 164
lo = 114, med = 39, hi = 189
lo = 186, med = 148, hi = 161

Sample of values generated:
lo = 20, med = 224, hi = 164
lo = 114, med = 39, hi = 189
lo = 186, med = 148, hi = 161

Why is med greater than hi?
Why is lo greater than med?

constraint increasing {
lo < med;
med < hi; }

14 of 18

Don Don MillsMills
LCDM Engineering

Stu Stu SutherlandSutherland
Sutherland HDL

Chris SpearChris Spear
Synopsys

Gotcha: Assertion Pass Statements
Execute at the Wrong Time

SystemVerilog Assertions can execute an optional "pass
statement" whenever the assertion succeeds

property p_req_ack;
@(posedge clk) req |-> ##1 ack;

endproperty

assert property (p_req_ack) req_ack_count++;

To avoid this Gotcha…
The next version of SystemVerilog will have a control to only
execute pass statements on success

[name :] assert property (property_specification) [pass_statement] [else fail_statement] ;

• If req then check for ack on next clock cycle
• If no req then abort with "vacuous success"
• If req then check for ack on next clock cycle
• If no req then abort with "vacuous success"

Intent: Count how many
times req is followed by ack

Intent: Count how many
times req is followed by ack

But…pass statements execute on both Success and Vacuous
Success

Counts how many times req is followed by ack
and how many times there was no req
Counts how many times req is followed by ack
and how many times there was no req

Gotcha!Gotcha!

15 of 18

Don Don MillsMills
LCDM Engineering

Stu Stu SutherlandSutherland
Sutherland HDL

Chris SpearChris Spear
Synopsys

Gotcha: Assertion Fail Statements
Execute at the Wrong Time

SystemVerilog Assertions can execute an optional "fail statement"
whenever the assertion fails

property p_req_ack;
@(posedge clk) req |-> ##1 ack;

endproperty

assert property (p_req_ack)
if (cnt_en) req_ack_count++;

else $fatal;

To avoid this Gotcha…
Add begin...end around the pass if statement

[name :] assert property (property_specification) [pass_statement] [else fail_statement] ;

Intent:
• Increment counter if assertion passes and
cnt_en is true

• Exit with fatal error if assertion fails

Intent:
• Increment counter if assertion passes and
cnt_en is true

• Exit with fatal error if assertion fails

The else is paired with the if, instead of the assertThe else is paired with the if, instead of the assert

But…the assertion else can be inadvertantly paired with an if
statement that is part of the pass statement

Pass statement
Fail statement? Gotcha!Gotcha!

16 of 18

Don Don MillsMills
LCDM Engineering

Stu Stu SutherlandSutherland
Sutherland HDL

Chris SpearChris Spear
Synopsys

Gotcha:
Assignments in Expressions

Is the classic C gotcha also a gotcha in SystemVerilog?

To avoid this Gotcha…
“It is what it is” — Engineers need to learn the unique
SystemVerilog syntax

always @(state)
if (state = LOAD)
...

Legal or Illegal?

The different syntax helps prevent the
gotcha of using = where == is intended, but…
The different syntax helps prevent the
gotcha of using = where == is intended, but…always @(state)

if ((state = LOAD))
...

SystemVerilog allows assignments in expressions…
But,… the syntax is different than C — the assign statement must
be enclosed in parentheses

Gotcha!Gotcha!
The different syntax is confusing to C/C++
programmers when an assignment is intended

17 of 18

Don Don MillsMills
LCDM Engineering

Stu Stu SutherlandSutherland
Sutherland HDL

Chris SpearChris Spear
Synopsys

Summary

Programming languages have "gotchas"

This paper describes 38 Verilog and SystemVerilog gotchas

A gotcha in a hardware model can be disastrous

A legal construct used in a way that gives unexpected results
Gotchas occur because useful language features can be abused

Difficult to find and debug
If not found before tape-out, can be very costly

Detailed explanations of each gotcha
Guidelines on how to avoid each gotcha
Lots of code examples

This paper is Part 2
Part 1 was presented at SNUG-Boston 2006

18 of 18

Don Don MillsMills
LCDM Engineering

Stu Stu SutherlandSutherland
Sutherland HDL

Chris SpearChris Spear
Synopsys

Do you have a favorite gotcha that is not in
the Part 1 or Part 2 paper?

Questions & Answers…

Please send it to Stu or Don!
We are collecting gotchas for publication in a book...

mills@lcdm-eng.comstuart@sutherland.com

