
SNUG San Jose 2007 1 More Gotchas in Verilog and SystemVerilog

Gotcha Again
More Subtleties in the Verilog and SystemVerilog Standards

That Every Engineer Should Know

Stuart Sutherland
Sutherland HDL, Inc.

stuart@sutherland-hdl.com

Don Mills
LCDM Engineering

mills@lcdm-eng.com

Chris Spear
Synopsys, Inc.

chris.spear@synopsys.com

ABSTRACT

The definition of gotcha is: “A misfeature of....a programming language...that tends to breed bugs
or mistakes because it is both enticingly easy to invoke and completely unexpected and/or
unreasonable in its outcome. A classic gotcha in C is the fact that ‘if (a=b) {code;}’ is
syntactically valid and sometimes even correct. It puts the value of b into a and then executes
code if a is non-zero. What the programmer probably meant was ‘if (a==b) {code;}’, which
executes code if a and b are equal.” (http://www.hyperdictionary.com/computing/gotcha).

This paper documents 38 gotchas when using the Verilog and SystemVerilog languages. Some of
these gotchas are obvious, and some are very subtle. The goal of this paper is to reveal many of
the mysteries of Verilog and SystemVerilog, and help engineers understand the important
underlying rules of the Verilog and SystemVerilog languages. The paper is a continuation of a
paper entitled “Standard Gotchas: Subtleties in the Verilog and SystemVerilog Standards That
Every Engineer Should Know” that was presented at the Boston 2006 SNUG conference [1].

SNUG San Jose 2007 2 More Gotchas in Verilog and SystemVerilog

Table of Contents
1.0 Introduction ..3
2.0 Design modeling gotchas ...4

2.1 Overlapped decision statements ... 4
2.2 RTL and synthesized gate-level simulation of full_case or unique case do not match 5
2.3 Simulation versus synthesis mismatch in intended combinational logic 6
2.4 Nonblocking assignments in combinational logic ... 8
2.5 Loading memory models modeled with always_latch .. 9
2.6 Default of 1-bit internal nets .. 11
2.7 Port direction coercion ... 12

3.0 General programming gotchas ...13
3.1 Compile errors with clocking blocks ... 13
3.2 Misplaced semicolons after end or join statement groups ... 14
3.3 Misplaced semicolons after decision statements ... 15
3.4 Misplaced semicolons in for loops .. 16
3.5 Infinite for loops .. 17
3.6 Locked simulation due to concurrent for loops ... 18
3.7 Referencing for loop control variables outside of the loop 19
3.8 Summing a subset of value in an array returns an incorrect value 20
3.9 Task/function arguments with default values .. 20
3.10 Static tasks and functions are not re-entrant .. 21
3.11 Compile error from a local variable declaration .. 23

4.0 Object Oriented Programming (OOP) gotchas ..23
4.1 Programming statements in a class get compilation errors .. 23
4.2 Compile errors when using interfaces with classes ... 25
4.3 Objects in mailbox have the same values .. 26
4.4 Passing object handles to methods using input versus ref arguments 26
4.5 Creating an array of objects ... 27

5.0 Constrained random verification gotchas ..28
5.1 Some object variables are not getting randomized .. 28
5.2 Boolean constraints on more than two random variables .. 29
5.3 Undetected randomization failures .. 30
5.4 Unwanted negative numbers in random values ... 31

6.0 SystemVerilog coverage gotchas ...32
6.1 Coverage is always reported as 0% for a cover group ... 32
6.2 The coverage report lumps all instances together .. 33
6.3 Covergroup arguments directions are sticky ... 34

7.0 SVA gotchas ..35
7.1 Assertion pass statements execute with a vacuous success 35
7.2 Concurrent assertions in procedural blocks ... 36
7.3 Mismatch in assert...else statements .. 37

8.0 Tool compatibility gotchas ..38
8.1 Default simulation time units and precision .. 38
8.2 Package chaining ... 39
8.3 Non-standard keywords ... 40
8.4 Array literals versus concatenations .. 41

SNUG San Jose 2007 3 More Gotchas in Verilog and SystemVerilog

8.5 Module ports that pass floating point values (real types) .. 42
9.0 Corrections to the first gotchas paper ..43
10.0 References and resources ...44
11.0 About the authors ...44

1.0 Introduction
A programming “gotcha” is a language feature, which, if misused, causes unexpected—and, in
hardware design, potentially disastrous—behavior. The classic example in the C language is
having an assignment within a conditional expression, such as:

if (a=b) /* GOTCHA! assigns b to a, then if a is non-zero sets match */
match = 1;

else
match = 0;

Most likely, what the programmer intended to code is if (a==b) instead of if (a=b). The results
are very different!

Just like any programming language, Verilog, and the SystemVerilog extensions to Verilog, have
gotchas. There are constructs in Verilog and SystemVerilog that can be used in ways that are
syntactically correct, but yield unexpected or undesirable results. Some of the primary reasons
Verilog and SystemVerilog have gotchas are:
• Inheritance of C and C++ gotchas

Verilog and SystemVerilog leverage the general syntax and semantics of the C and C++ lan-
guages. Many of the gotchas of C and C++ carry over into Verilog and SystemVerilog. (As an
aside, the common C gotcha shown at the beginning of this introduction cannot occur in Ver-
ilog and SystemVerilog; it is an illegal syntax.)

• Loosely typed operations
Verilog and SystemVerilog are loosely typed languages. As such, operations can be per-
formed on any data type, and underlying language rules take care of how operations should
be performed. If a design or verification engineer does not understand these underlying lan-
guage rules, then unexpected results can occur.

• Allowance to model good and bad designs
An underlying philosophy of Verilog and SystemVerilog is that engineers should be allowed
to model and prove both what works correctly in hardware, and what will not work in hard-
ware. In order to legally model hardware that does not work, the language must also permit
unintentional modeling errors when the intent is to model designs that work correctly.

• Not all tools implement the Verilog and SystemVerilog standards in the same way.
Software tools do not always execute Verilog and SystemVerilog code in the same way. This
is not a problem with the definition of the Verilog and SystemVerilog languages; it is a prob-
lem with software tools. Nevertheless, these differences can result in unexpected simulation
and synthesis differences.

SNUG San Jose 2007 4 More Gotchas in Verilog and SystemVerilog

• Ambiguities in the IEEE standards
The IEEE Verilog Language Reference Manuals (LRM)[2] and SystemVerilog Language
Reference Manual[3] are complex documents, numbering over 1500 pages combined. Two
types of ambiguities occasionally occur in these complex documents: the rule for a corner
case usage of the language is not covered, or different sections of the LRMs describe conflict-
ing rules. These ambiguities in the standards can lead to differences in tool behavior.

This paper is a continuation of a paper presented six months earlier at the Synopsys Users Group
(SNUG) Conference held in Boston, Massachusetts, in October, 2006). The first paper was titled
“Standard Gotchas: Subtleties in the Verilog and SystemVerilog Standards That Every Engineer
Should Know” [1]. This first paper presented 57 gotchas. The gotchas listed in that paper are not
repeated in this paper. It is intended that the first paper and this paper be used together.

2.0 Design modeling gotchas

2.1 Overlapped decision statements

Gotcha: One of my decision branches never gets executed.

Synopsis: Cut and paste errors in decision statements can go undetected in simulation.

Verilog evaluates a series of if...else...if...else decision in the order in which the decisions are
listed. If a coding error is made such that two decisions could both evaluate as true, then only first
branch is executed.

always @* begin
if (sel == 2'b00) y = a;

else if (sel == 2'b01) y = b;
else if (sel == 2'b01) y = c; // OOPS! same sel value as previous line
else (sel == 2'b11) y = d;

end

The coding error in the example above is not a syntax error. The code will compile and simulate,
but the third branch will never execute. Since it is not a syntax error, the modeling error can go
undetected in simulation.

A similar cut-and-paste error can be made in case statements. In Verilog, an overlap in case
decisions is not an error. Instead, only the first matching case branch is executed.

always @* begin
case (sel)

2'b00: y = a;
2'b01: y = b;
2'b01: y = c; // OOPS! same sel value as previous line
2'b11: y = d;

endcase
end

Both of the above examples are very easy errors to make. Often, engineers will write the code for
the first decision, then cut-and-paste that line for the rest of the decision, modifying the pasted
lines as needed. If, after pasting, a decision values is not modified, then a difficult to detect coding
error has occurred. Gotcha!

SNUG San Jose 2007 5 More Gotchas in Verilog and SystemVerilog

Synthesis compilers will warn about the overlap in decisions in the preceding examples.
However, since it is only a warning message, it may go unnoticed. Both examples will synthesize
to latches because the combinational logic is not fully defined for synthesis.

How to avoid this gotcha: SystemVerilog adds a unique modifier that can be used with both
if...else and case decision statements.

always_comb begin
unique if (sel == 2'b00) y = a;

else if (sel == 2'b01) y = b; // SIMULATION WARNING DUE TO OVERLAP
else if (sel == 2'b01) y = c; // SIMULATION WARNING DUE TO OVERLAP
else (sel == 2'b11) y = d;

end

always_comb begin
unique case (sel)

2'b00: y = a;
2'b01: y = b; // SIMULATION WARNING DUE TO OVERLAP
2'b01: y = c; // SIMULATION WARNING DUE TO OVERLAP
2'b11: y = d;

endcase
end

The unique modifier requires that simulators report a warning if multiple branches of a decision
are true at the same time. The unique modifier also requires that simulation generate a warning
message if no decision branch is taken.

Warning! In synthesis, DC treats unique case the same as if both the synthesis pragmas of
full_case and parallel_case are set. With the full_case pragma set, DC will not generate
latches in the two examples above. This will result in differences in the RTL behavior and the
synthesized gate-level behavior. Do not ignore the simulation warnings generated by using
unique—the warnings indicate there is a coding problem!

2.2 RTL and synthesized gate-level simulation of full_case or unique case do not match

Gotcha: My default assignment before a case statement disappears after synthesis.

Synopsis: Synthesis “optimizes” full_case and unique case decisions as self-contained logic.

When a case statement must assign to several variables, a common modeling style is to assign a
default value to all variables before the case statement, and within the case statement only assign
values that are different than the defaults. This style can substantially reduce the code within a
case statement, and document the values that are different for each branch of a case statement.

The DC synthesis compiler treats a case statement that has a full_case pragma as a complete,
and therefore self-contained, decision. This will cause the following example to synthesize
differently than the RTL simulation.

always_comb begin
load_s = 1'b0; // default values for combinational outputs
load_b = 1'b0;
load_f = 1'b0;
load_pc = 1'b0;
inc_pc = 1'b0;

SNUG San Jose 2007 6 More Gotchas in Verilog and SystemVerilog

set_br = 1'b0;
rslt_oeN = 1'b0;
dout_oeN = 1'b0;
dmem_rdN = 1'b0;
dmem_wrN = 1'b0;
case (state) // synopsys full_case -- Gotcha!

state1 : begin // only values different than default
load_s = 1'b1; // are listed in case statement
inc_pc = 1'b1;

end
state2 : set_br = 1'b1;
state3 : begin

dmem_wrN = 1'b1;
rslt_oeN = 1'b1;

end
...

endcase
end

In simulation, the combinational logic outputs are first assigned a default value. Then, if specific
conditions are true, specific outputs are modified to a different value. Simulation results are
correct for this example.

In synthesis, the full_case pragma instructs DC to treat the case statement as complete and self-
contained. Therefore, DC will consider the default assignments before the case statement as
redundant, and optimize away these assignments. The result is that the gate-level implementation
of the example above will not function the same way as what was simulated. Gotcha!

The Synopsys DC synthesis compiler treats the SystemVerilog unique case the same as if both
the synthesis pragmas of full_case and parallel_case were set. Thus, using unique case in
the example above will have the same synthesis gotcha.

How to avoid this gotcha: This gotcha is not a Verilog or SystemVerilog language problem. It is a
problem with how DC optimizes full_case pragmas. To avoid this gotcha, neither full_case
nor unique case should be used if a case statement is not completely self-contained.

2.3 Simulation versus synthesis mismatch in intended combinational logic

Gotcha: Simulation of my gate-level combinational logic does not match RTL simulation.

Synopsis: Synthesis may optimize away inferred storage in combinational logic.

Verilog and SystemVerilog require that the left-hand side of procedural assignments be variable
types. In simulation, variables have storage, and preserve values between assignments. In
hardware, combinational logic devices do not have storage. If the designer’s intent is to model
combinational logic, then the RTL model should not rely on the storage of the simulation
variables. That is, when the combinational block is entered, all outputs of the combinational logic
must be assigned a value. If a value is not assigned, then the output is relying on the variable’s
storage from a previous assignment.

Generally, the DC synthesis compiler is very good at detecting if a combinational logic procedural
block is relying on simulation storage. When variable storage is used, DC will add latches to the

SNUG San Jose 2007 7 More Gotchas in Verilog and SystemVerilog

gate-level implementation to preserve that storage. In the following example, however, DC does
not detect that the RTL model is using the storage of the variables.

module bad_comb_logic (input wire in1,
output reg out1, out2

);
always @(in1, out2) begin

out1 = out2; // GOTCHA: out1 stores out2 (previous value of in1)
out2 = in1; // out2 is updated to in1

end
endmodule

In simulation, variable out1 is assigned the current value of variable out2, which is the value of
in1 stored the previous time the procedural block was evaluated. After out1 has saved the current
value of out2, variable out2 is updated to reflect the new value of input in1. The functionality
represented by this RTL model is:

When this example is synthesized, Design Compiler generates the following gate-level
functionality:

Simulation of the post-synthesis functionality will not match the RTL simulation functionality.
DC failed to detect that out1 is reflecting the stored value of out2 (which is the previous value of
in1), and does not implement the RTL functionality. DC does not generate any warnings or errors
for this example. Gotcha!

How to avoid this gotcha: This coding example is a bad model. The RTL functionality does not
match combinational logic, latched logic or flip-flop logic. The problem is that the model assigns
to the two combinational logic outputs in the wrong order, and therefore creates a dependency on
the variable storage. To correct the problem, the model should be coded as:

always @(in1, out2) begin
out2 = in1; // out2 is updated to in1
out1 = out2; // OK: out1 gets new value of out2 instead of old value

end

A style check tool, such as LEDA, can also be used to detect the incorrectly modeled
combinational logic. LEDA generated the following warnings on the incorrect example at the
beginning of this section:

Stored value of
previous in1

in1 out2

out1

in1 out2

out1

SNUG San Jose 2007 8 More Gotchas in Verilog and SystemVerilog

W446: Reading from an output port out2
W502: A variable in the sensitivity list is modified inside the block

2.4 Nonblocking assignments in combinational logic

Gotcha: My RTL simulation locks up and time stops advancing.

Synopsis: Nonblocking assignments in a combinational logic block can cause infinite loops that
lock up simulation.

Verilog’s nonblocking assignment is intended to model the behavior of sequential logic clock-to-q
delay. A nonblocking assignment evaluates the right-hand side expression immediately, and
schedules a change on the left-hand variable after a clock-to-q delay. Any statements following
the nonblocking assignment statement are “not blocked” in the simulation execution flow. This
delta between evaluation and change behaves as a clock-to-q delay, even in a zero-delay RTL
model.

The following example uses nonblocking assignments incorrectly, by placing the assignment in a
combinational logic procedural block. The example will potentially lock up simulation in the
simulation time step in which m or n changes value.

always @(m or n) // combinational logic sensitivity list (no clock edge)
m <= m + n; // scheduled change to m after zero-delay clock-to-q delta

In the example above, the always block triggers when either m or n changes value. The left-hand
side, which is m, is scheduled to be updated later in the same simulation time. During this delta in
time, the nonblocking assignment does not block the execution flow of the procedural block, and
so the block returns to the sensitivity list to wait for the next change on m or n. After the zero-
delay clock-to-q delta, the simulator will update the value of m. This change will trigger the
sensitivity list. As long as the result of m + n results in a new value of m, simulation will be locked
up in the current simulation time, continually scheduling changes to m, and then triggering on that
change. Gotcha!

There are actually two gotchas in the preceding example. One is that simulation locks up as soon
as m or n changes value the first time (assuming n is not 0). The second gotcha is that this is
actually a bad design, that would likely cause instability when implemented in gates. This second
gotcha is an example of the underlying philosophy of Verilog, which is that engineers should be
permitted to model designs that won’t work correctly, in order to analyze the behavior of the
incorrect hardware. In this case, the model represents combinational logic with a zero-delay
feedback path.

How to avoid these gotchas: The simulation lock-up problem can be fixed by changing the

m+
m

n

SNUG San Jose 2007 9 More Gotchas in Verilog and SystemVerilog

assignment statement from nonblocking to blocking. A blocking assignment immediately updates
the variable on the left-hand side. The value of m will have a new, stable value before the
procedural block returns to the sensitivity list, and thus will not re-trigger the procedural block.

always @(m or n) // combinational logic sensitivity list (no clock edge)
m = m + n; // immediate update to m with no clock-to-q delay

But, this change only fixes the lock-up in simulation. It does not fix the second gotcha, of an RTL
model that does not represent good combinational logic design. There are two ways to fix the
design problem in the preceding example, depending on if the intent is to model a simple
combinational logic adder, or an accumulator (an adder that stores its output, allowing that output
to feedback to the adder input).

SystemVerilog comes to the rescue! The SystemVerilog always_comb and always_ff constructs
can be used to help avoid this coding error gotcha. These constructs document what type of logic
is intended, and allow tools to check that the functionality matches the designer’s intent.

The always_comb procedural block infers a proper combinational logic sensitivity list. In
addition, always_comb enforces some coding rules that help ensure proper combinational logic is
modeled. One of these rules is that only one source can write to a variable. In the code
m <= m + n;, m is being used as both an input and an output of the adder. If any other part of the
design also writes a value to m (as an input to the adder), it is a syntax error. In the context of a full
design, the following code causes a syntax error, instead of causing simulation to lock up.

always_comb // inferred combinational logic sensitivity list
m <= m + n; // PROBABLE SYNTAX ERROR: no other process can write to m

VCS generates the following error message when always_comb is used, and some other source
also generates values for the adder inputs:

Variable "m" is driven by an invalid combination of procedural drivers.
Variables written on left-hand of "always_comb" cannot be
written to by any other processes, including other
"always_comb" processes.

If the intent is to model a simple adder, then a blocking assignment should be used, and the output
of the adder should be assigned to a different variable to prevent combinational logic feedback.

always_comb // inferred combinational logic sensitivity list
y = m + n; // immediate update to y with no clock-to-q delay

If the intent is to model an accumulator with a registered output, then a clock needs to be specified
in the procedural block sensitivity list. The clock edge controls when the feedback path can
change the adder input. The SystemVerilog always_ff procedural block helps document that the
intent is to have clocked sequential logic.

always_ff @(posedge clk) // sequential logic sensitivity list with clock
m <= m + n; // scheduled change to m after zero-delay clock-to-q delta

2.5 Loading memory models modeled with always_latch

Gotcha: When I use SystemVerilog, I cannot load my memory models using $readmemb.

Synopsis: The $readmemb() and $readmemh() system tasks cannot be used to load a RAM model

SNUG San Jose 2007 10 More Gotchas in Verilog and SystemVerilog

that uses always_latch.

Typically, a bus-functional model of a RAM models are either synchronous (clock based) or
asynchronous (enable based). Synchronous RAMs behave at the abstract level as flip-flops.
Asynchronous RAMs behave at the abstract level as latches. However, there is a gotcha if these
devices are modeled using the SystemVerilog’s always_ff or always_latch procedural blocks.

module RAM
(inout wire [63:0] data,
 input wire [7:0] address,
 input wire write_enable, read_enable
);

logic [63:0] mem [0:255];

always_latch // asynchronous write (latch behavior)
if (write_enable) mem[address] <= data; // write to RAM storage

assign data = read_enable? mem[address] : 64'bz;
endmodule

module test;
wire [63:0] data;
logic [7:0] address;
logic write_enable, read_enable;

RAM ram1 (.*); // instance or RAM model

initial begin
$readmemh("ram_data.dat", ram1.mem); // GOTCHA!
...

In this example, the RAM model is correct—at least functionally. The problem is that the
always_latch procedural block enforces a synthesis rule that multiple procedural blocks cannot
write to the same variable. In this example, the testbench is attempting to load the RAM model
using the Verilog $readmemh task, which is a common way to load Verilog memory models. This
is a second procedural block writing to the RAM storage (mem), which is illegal. VCS generates
the following error:

Error-[ICPD] Invalid combination of procedural drivers
Variable "mem" is driven by an invalid combination of procedural

drivers. Variables written on left-hand of "always_latch" cannot
be written to by any other processes, including other
"always_latch" processes.

How to avoid this gotcha: The fix for this coding problem is to use Verilog’s general purpose
always procedural block for this abstract RAM model. SystemVerilog’s always_latch
procedural block is intended to model synthesizable RTL models, and is the wrong construct for
abstract models.

module RAM
...
always @* // asynchronous write (latch behavior)

if (write_enable) mem[address] <= data; // write to RAM

SNUG San Jose 2007 11 More Gotchas in Verilog and SystemVerilog

...

2.6 Default of 1-bit internal nets

Gotcha: My netlist only connects up bit zero of my vector ports.

Synopsis: Undeclared internal connections within a netlist infer 1-bit wires, even if the port to
which the net is connected is a vector.

Verilog has a convenient shortcut when modeling netlists, in that it is not necessary to declare all
of the interconnecting nets. Undeclared connections default to a wire net type. In a netlist with
hundreds or thousands of connections, implicit wires can significantly simplify the Verilog source
code.

The vector size of implicit nets is determined from local context. If the undeclared signal is also a
port of the module containing the signal, then the implicit net will be the same size as the
containing module’s port. If the undeclared signal is only used internally in the containing
module, then a 1-bit net is inferred. Verilog does not look at the port sizes of what the signal is
connected to in order to determine the implicit net type size.

The following top-level netlist connects signals to a 4-to-1 multiplexer. The data inputs and
outputs of the mux are 8 bits wide. The select input is 2 bits wide. No data types are declared in
the top-level netlist. Therefore, implicit wires will be inferred for all connections.

module top_level
(output [7:0] out, // 8-bit port, no data type declared
input [7:0] a, b, c, d // 8-bit ports, no data type declared

);

mux4 m1 (.y(out), // out infers an 8-bit wire type
.a(a), // a, b, c, d infer 8-bit wires
.b(b),
.c(c),
.d(d),
.sel(select)); // GOTCHA! select infers 1-bit wire

...
endmodule

module mux4
(input [1:0] sel, // 2-bit input port
input [7:0] a, b, c, d, // 8-bit input ports
output [7:0] y // 8-bit output port

);
...

endmodule

In the example above, the top-level netlist connects a signal called select to the sel port of
mux4. Within mux4, the sel port is 2 bits wide. But, when inferring undeclared nets in the
top_level module, Verilog only looks within the local context of top_level. There is nothing
within top_level from which to infer the size of select. Therefore, select defaults to a 1-bit
wire. Gotcha!

How to avoid this gotcha: VCS, DC, LEDA and other Verilog tools will generate elaboration

SNUG San Jose 2007 12 More Gotchas in Verilog and SystemVerilog

warning messages for this gotcha, reporting size mismatches in port connections. Engineers
should not ignore these warnings! Almost always, warnings about size mismatches in port
connections indicate unintentional errors in a netlist.

To fix this gotcha, all internal vectors of a netlist must be explicitly declared. Verilog does allow
turning off implicit net types in some or all modules, using the compiler directive
‘default_nettype none. This directive makes it a requirement that all nets be declared,
including 1-bit nets.

Another way to avoid this gotchas is to use the SystemVerilog .name or .* port connection
shortcuts. These shortcuts will not infer undeclared nets. Further, these shortcuts will not infer
connections that do not match in size.

2.7 Port direction coercion

Gotcha: I declared my port as an input, and synthesis changed it to an output port, or vice-versa.

Synopsis: Software tools can ignore the declared direction of a module port based on how the
port is used.

A little known feature of Verilog is that tools can change a port that was declared as either input
or output to be an inout port. This is referred to as “port coercion”. Port coercion can occur in
two circumstances:
• If a module writes values to a port that is defined as input
• If a module reads values of a port that is defined as output

Port coercion can be useful. It allows the output values of modules to also be read within a
module. However, port coercion can also cause unexpected design behavior (gotchas), as
illustrated in the following example.

module top
(output wire [7:0] out, // net data type
input wire [7:0] in // net data type

);

buffer8 b1 (.y(out), .a(in));
endmodule

module buffer8
(output wire [7:0] y, // net data type
input wire [7:0] a // net data type

);
assign a = y; // OOPS! this should have been y = a;

endmodule

In the example above, there is a coding error in module buffer8. Instead of assigning the input
value to the output (y = a), the model assigns the output to the input (a = y). Instead of being a
syntax error, software tools can coerce the module’s ports to be inout ports. Gotcha!

Note that port coercion can only occur when net data types (such as wire) are used on both sides
of a port. The reason for this is because net types allow, and resolve, multi-driver functionality.

SNUG San Jose 2007 13 More Gotchas in Verilog and SystemVerilog

Since ports are coerced to inout ports, they become multi-driver ports, which require net types.

How to avoid this gotcha: Port coercion cannot occur if a variable type (e.g. reg or logic) is used
as a port. Verilog allows output ports to be declared as a variable type, but input ports must be a
net type. SystemVerilog relaxes the Verilog data type rules, and allows variables to be used on
both input and output ports (bidirectional inout ports must still be a net type, as in Verilog).
SystemVerilog also allows continuous assignments to assign to variables. Therefore, module
buffer8, can be coded as follows.

module buffer8
(output logic [7:0] y, // variable data type
input logic [7:0] a // variable data type

);
assign a = y; // ELABORATION ERROR! this should have been y = a;

endmodule

By using variables, port coercion cannot occur, and the coding mistake becomes an error that is
detected at elaboration time.

Another way port coercion can be prevented is to use the new Verilog-2005 uwire (unresolved
wire) net data type. The uwire type only allows a single driver on a net. Thus, when buffer8 is
connected within module top, an elaboration error occurs because the buffer8 input port (a) has
multiple drivers.

module buffer8
(output uwire [7:0] y, // variable data type
input uwire [7:0] a // variable data type

);
assign a = y; // ELABORATION ERROR! this should have been y = a;

endmodule

3.0 General programming gotchas

3.1 Compile errors with clocking blocks

Gotcha: I get a syntax error when my test program waits for a clocking block edge.

Synopsis: When a test waits for a clocking block edge to occur, the posedge or negedge keyword
should not be used.

Test code that uses the @ event control to delay until a clocking block clock occurs should not
specify posedge or negedge of the clocking block name. The following example causes a
compilation error:

For example:
program test (input bit clk,

input bit grant,
output bit request

);
clocking cb @(posedge clk);

output request;
input grant;

endclocking

SNUG San Jose 2007 14 More Gotchas in Verilog and SystemVerilog

initial begin
@(posedge cb) // ERROR: cannot select edge of a clocking block

$display("At %0d: clocking block triggered", $time);
...

end
endprogram

How to avoid this gotcha: When test code needs to delay for a clocking block clock using the @
event control, only the clocking block name should be used. This is because clocking block
definitions already specify which edge of the clock is being used. For example:

initial begin
@(cb) // OK: delay until clocking block event occurs

$display("At %0d: clocking block triggered", $time);
...

end
endprogram

Using just the clocking block name for an event control can make test code more robust and easier
to maintain, especially when the clocking block is defined in an interface. The test program does
not need to know if the interface uses a positive edge, negative edge, or both edges (double data
rate) of the clock. All the test program needs to reference is the clocking block name.

3.2 Misplaced semicolons after end or join statement groups

Gotcha: Sometimes I get compilation errors after end or join statements, but not other times.

Synopsis: A semicolon after end or join is not legal syntax, but, depending on context, might not
be an error.

Multiple programming statements are grouped using begin...end or fork...join,
fork...join_any, or fork...join_none. These statement grouping constructs are not followed by
a semicolon. However, it is not a syntax error to place a semicolon after begin or fork. The
semicolon is merely an additional statement within the statement group. A semicolon by itself is a
complete programming statement, representing a null-operation statement.

A semicolon after end, join, join_any or join_none might, or might not, be a syntax error,
depending on context. If the keyword is nested within another statement group, then a semicolon
is not an error; it is simply another statement in the outer statement group. If the end, join,
join_any or join_none keyword is not enclosed in an outer statement group, then the semicolon
is a syntax error, because it is a null statement that is not part of procedural block.

module foo;
...
initial begin; // semicolon is NOT an error

if (enable) begin; // semicolon is NOT an error
...

end; // semicolon is NOT an error
end; // semicolon IS an error

endmodule

How to avoid this gotcha: This is not really a language gotcha, in that there are not any

SNUG San Jose 2007 15 More Gotchas in Verilog and SystemVerilog

unexpected or undesirable run-time results. However, the misplaced semicolons can be confusing,
because sometimes they are legal, and sometimes they are illegal. To avoid this gotcha, never put
a semicolon after the keywords begin, end, fork, join, join_any or join_none.

3.3 Misplaced semicolons after decision statements

Gotcha: Statements in my if() decision execute even when the condition is not true.

Synopsis: A semicolon after the closing parenthesis of a decision statement is legal, and causes
the statements that should be within the if() to be outside the if().

A semicolon (;) by itself is a complete programming statement, representing a null-operation
statement. A misplaced semicolon after if () is legal. However, the misplaced semicolon can
cause the statement or begin...end group after the misplaced semicolon to execute at times that
were not intended.

module foo;
reg a;
initial begin

a = 1;
if (a); // semicolon is wrong, but NOT syntax error

$display("'a' is true"); // GOTCHA! also prints when 'a' is false
end

endmodule

In the example above, there is no syntax error. The semicolon is a legal statement, and is the only
statement associated if the if condition. The $display statement, though nicely indented, is not
part of the if statement. The $display message prints every time, regardless of whether the
variable a is true or false. Gotcha!

The next example illustrates how a misplaced semicolon can lead to a syntax error on a
subsequent line of code.

module bar;
reg a;
initial begin

a = 1;
if (a); // semicolon is NOT an error

$display("'a' is true");
else // SYNTAX ERROR! 'else' does not follow 'if'

$display("'a' is false");
end

endmodule

The else line in the example above appears to be paired with the if statement. However, the only
statement in the if branch the misplaced semicolon, which is a null statement. Therefore, the
$display statement that follows is not part of the if statement, which means the else statement
is not paired with the if statement. The compiler will report an error on the line with else, which
is actually two lines after the real problem. Gotcha!

How to avoid this gotcha: This is an example of a gotcha that is inherited from the C language,
from which Verilog and SystemVerilog have their syntax and semantic roots. The same coding
mistakes illustrated above can be made in C. The way to prevent this coding gotcha is to know

SNUG San Jose 2007 16 More Gotchas in Verilog and SystemVerilog

Verilog syntax, and to correctly use semicolons.

A language-aware text editor can help to avoid this gotcha. A good language-aware editor for
Verilog can add auto indentation. The examples above would have obvious indentation errors
with such an editor. For example, the first example, above, might be indented as follows:

initial begin
a = 1;
if (a);
$display("'a' is true"); // statement is not auto-indented

end

3.4 Misplaced semicolons in for loops

Gotcha: My for loop only executes one time.

Synopsis: A semicolon at the end of a for loop declaration effectively makes the loop always
execute just one time.

A semicolon (;) by itself is a complete programming statement, representing a null-operation
statement. A misplaced semicolon after for() is syntactically legal. However, the misplaced
semicolon has the effect of making loop appear to only execute one time.

module foo;
integer i;
initial begin

for (i=0; i<=15; i=i+1); // semicolon is NOT an error
begin
$display("Loop pass executing"); // GOTCHA! only executes once

end
end

endmodule

In the example above, there is no syntax error. The semicolon is a legal statement, and is the only
statement within the for loop. The begin...end group with the $display statement is not part of
the for loop. The loop will execute 16 times, executing a null statement. After the loop has
completed, the group of statements that appear to be inside the loop—but which are not—will
execute one time. Gotcha!

Note that this gotcha can also occur with while, repeat, forever and foreach loops.

Looping multiple times executing a null statement is not necessarily a coding error. A common
verification coding style is to use an empty repeat loop to skip multiple clock cycles. For
example:

initial begin
resetN <= 0;
repeat (8) @(posedge clock) ; // loop for 8 clock cycles doing nothing
resetN = 1;
...

end

How to avoid this gotcha: This gotcha is inherited from the C programming language, where the
same coding error is syntactically legal. A language-aware editor with auto-indenting can help to

SNUG San Jose 2007 17 More Gotchas in Verilog and SystemVerilog

avoid this gotcha. A good Verilog editor will show the indentation to be wrong for this code,
which will indicate a misplaced semicolon.

There is another gotcha with the for loop example above. Even though a null statement in a for
loop is legal code, some tools, including VCS, make it a syntax error. The intent in making this an
error is to help engineers avoid a common C programming gotcha. Unfortunately, it also means
that if the engineer actually wanted an empty for loop, these tools do not allow what should be
legal code. The workaround, if an empty loop is actually intended, is to replace the null statement
with an empty begin...end statement group.

3.5 Infinite for loops

Gotcha: My for loop never exits.

Synopsis: Declaring too small of a for loop control variable can result in loops that never exits.

A for loop executes its statements until the loop control expression evaluates as false. As in most
programming languages, it is possible to write a for loop where the control expression is always
true, creating an infinite loop that never exits. This general programming gotcha is more likely to
occur in Verilog, because Verilog allows engineers to define small vector sizes.

The intent in the following example is to loop 32 times, with the loop control variable having a
value from 0 to 31.

reg [3:0] i; // 4-bit loop control variable
for (i=0; i<=31; i=i+1) // GOTCHA! i<=31 will always be true

begin /* loop body */ end

In this example, the loop will run until i is incremented to a value greater than 31. But, as a 4-bit
variable, when i has a value of 31 and is incremented, the result is 0, which is less than or equal to
31. The loop control test will be true, and the loop will continue to execute, starting over with i
equal to 0.

How to avoid this gotcha: A simple way to avoid this gotcha is to increase the size of the loop
control variable so that it can hold a larger value. Typically, either integer (a Verilog type) or int
(a SystemVerilog type) should be used as loop control variables, both of which are 32-bit signed
variables.

SystemVerilog allows the loop control variable to be declared as part of the for loop. This makes
it easier to avoid the gotcha of too small of a loop control variable, because variable declaration
and usage of the variable are in the same line of code.

reg [3:0] result; // 4-bit design or test variable
for (int i=0; i<=31; i=i+1) // OK: i can have a value greater than 31

@(posedge clk) result = i; // OK, but mismatch in assignment sizes

Synthesis results are not affected the extra bits of the loop control variable. In synthesis, the name
of the loop control variable is primarily used just as a label in the flattened gate-level netlist
generated by synthesis. If the value of the larger loop control variable is assigned to a smaller
vector, as in the example above, synthesis optimizes out any unused bits of the larger variable.

SNUG San Jose 2007 18 More Gotchas in Verilog and SystemVerilog

3.6 Locked simulation due to concurrent for loops

Gotcha: When I run simulation it either locks up or my combinational logic gets incorrect results.

Synopsis: Using always @* for multiple combinational logic procedural blocks that use to the
same for loop control variable can lock up simulation.

The Verilog always @* construct infers a combinational logic sensitivity list. This list includes all
external signals that are read within the procedural block.

The following example illustrates a simple testbench that forks off two tests to run in parallel.
Each test contains a for loop that uses a variable called i as the loop control. One loop increments
i, and the other loop decrements i.

module test;
logic [7:0] a, b, c, sum, dif;
int i;

adder_subtractor dut (.*);

initial begin
fork

begin: add_test
for (i = 0; i < 10; i++) begin // increment i

a = i;
b = i + 10;
#10 $display("At %0d, in scope %m: i=%0d sum=%0d", $time, i, sum);

end
end

begin: dif_test
for (i = 8; i > 2; i--) begin // decrement i

c = i;
#10 $display("At %0d, in scope %m: i=%0d dif=%0d", $time, i, dif);

end
end

join
$display("\nTests finished at time %0d\n", $time);
$finish;

end
endmodule

The intent is that after both loops complete, $finish is called and simulation exits. One loop
should execute 10 times, and the other 8 times. Instead of completing, however, simulation looks
up, and never exits. The reason is because each loop is changing the same control variable,
preventing either loop from ever reaching a value that will cause the loop to exit. Gotcha!

How to avoid this gotcha: The way to correct the problem above is to use different variables for
each loop. The simplest and most eloquent way to do this is to use the SystemVerilog feature of
declaring a local variable within each for loop. As a local variable instead of an external variable,
i is not be in the sensitivity list of each procedural block.

SNUG San Jose 2007 19 More Gotchas in Verilog and SystemVerilog

initial begin
fork

begin: add_test
for (int i = 0; i < 10; i++) begin // i is a local variable

...
end

end

begin: dif_test
for (int i = 8; i > 2; i--) begin // i is a local variable

...
end

end
join

3.7 Referencing for loop control variables outside of the loop

Gotcha: My Verilog code no longer compiles after I convert my Verilog-style for loops to a
SystemVerilog style.

Synopsis: Loop control variables declared as part of a for loop declaration cannot be referenced
outside of the loop.

Verilog requires that loop control variables be declared before the variable is used in a for loop.
Since the variable is declared outside the for loop, it is a static variable that can also be used
outside the for loop.

reg [31:0] a, b, c;
integer i; // static loop control variable
initial begin

for (i=0; i<=31; i=i+1) begin
c[i] = a[i] + b[i]; // OK to reference i inside of loop

end
$display("i is %0d", i); // OK to reference i outside of loop

end

SystemVerilog allows declaring for loop control variables within the declaration of the loop.
These are dynamic variables that are local to the loop. The variable is dynamically created when
the loop starts, and disappears when the loop exits. Because the variable is dynamic, it is illegal to
reference the variable outside of the scope in which it exists. The following code causes a syntax
error:

reg [31:0] a, b, c;
initial begin

for (int i=0; i<=31; i=i+1) begin // dynamic variable declaration
c[i] = a[i] + b[i]; // OK: i is used inside the loop

end
$display("i is %0d", i); // ILLEGAL: i is used outside of loop

end

How to avoid this gotcha: Technically speaking, this is not a gotcha, because it is a syntax error,
rather than an unexpected run-time behavior. However, there are times when it is useful to
reference loop control variables outside of the loop. In those situations, the loop variable should

SNUG San Jose 2007 20 More Gotchas in Verilog and SystemVerilog

be declared outside of the loop, using the Verilog coding style shown in the first example in this
section.

3.8 Summing a subset of value in an array returns an incorrect value

Gotcha: When I try to sum of all array elements greater than 7, I get the wrong answer.

Synopsis: Using sum with(), returns a sum of the with expressions, not a sum of a subset of
array element values.

The .sum method returns the sum of the values stored in all elements of an array. An optional
with() clause can be used to filter out some array values. But, when using .sum with(), there is
a subtle gotcha. In the following example, the intent is to sum up all values in the array that are
greater than 7:

program automatic test;
initial begin

int count, a[] = ’{9, 8, 7, 6, 5, 4, 3, 2, 1, 0};
count = a.sum with (item > 7); // GOTCHA: expect 17, get 2
$display("\"a.sum with(item > 7)\" returns %0d", count);

end
endprogram

When the optional with() clause is used, the .sum method adds up the return values of the
expression inside the with() clause, instead of summing the values of the array elements. In the
example above, the (item > 7) is a true/false expression, which is represented with the values 1
or 0. If the array contains the values {9,8,7,3,2,1}, then the true/false test for each array
element returns the set of values {1,1,0,0,0,0}. The sum of these true/false values is 2. Gotcha!

How to avoid this gotcha: The true/false result of the relational expression can be used to select
just the element values where the test is true. Two simple ways to do this are:

count = a.sum with((item > 7) ? item : 0);

count = a.sum with((item > 7) * item);

3.9 Task/function arguments with default values

Gotcha: I get a syntax error when I try to assign my task/function input arguments a default value.

Synopsis: Only task function input and inout arguments can be assigned a default value.

The formal arguments of a task or function can be input, output, inout or ref. In
SystemVerilog, task/function arguments default to input if no direction has been specified. Once
a direction has been explicitly specified, however, that direction is sticky; it affects all subsequent
arguments until a new direction is specified.

SystemVerilog allows input and inout arguments of a task or function to be specified with a
default value. When the task or function is called, a value does not need to be passed to formal
arguments that have a default value.

The following function header gets a compile error because the second argument, start, has a
default value specified.

SNUG San Jose 2007 21 More Gotchas in Verilog and SystemVerilog

function automatic int array_sum(ref int a[], int start=0);
for (int i=start; i<a.size(); i++)

array_sum += a[i]);
endfunction

Only input and inout arguments can have a default value. The problem with this code is that the
start argument does not have a direction explicitly specified. If no directions at all had been
specified, start would default to an input argument, which can have a default value. In this
example, however, the first formal argument of the function, a[], has been defined with a
direction of ref. This direction is sticky; it also apples to start. Assigning a default value to a
ref argument is illegal.

How to avoid this gotcha: To avoid a direction gotcha, specify a direction for all task/function
arguments.

function int array_sum(ref int a[], input int start=0);

Note: The example shown in this section only causes a compilation error because start has a
default assignment, which is illegal for ref arguments. Sticky argument directions can cause
other subtle programming gotchas that are not compilation errors.

3.10 Static tasks and functions are not re-entrant

Gotcha: My task seems to work fine sometimes, but gets bogus results other times.

Synopsis: Invoking a static task or function while a previous call is still executing may cause
undesirable results.

In Verilog, tasks and functions are static by default. This is different than C, where functions are
dynamic by default. The difference between static and dynamic is important. In static tasks and
functions, any local storage within the task or function, including input arguments, are shared by
every call to the task or function. In a dynamic task or function, new storage is created for each
call, which is unique to just that call.

This default of static tasks and functions makes sense when modeling hardware, because storage
within hardware is static. A testbench, on the other hand, is more of a software program rather
than hardware. This different default behavior between C and Verilog can cause unexpected
behavior if a verification engineer is expecting C-like programming behavior. Static storage is
particularly evident when Verilog tasks are used in a testbench. Tasks can take simulation time to
execute. Therefore, it is possible for a task to be invoked while a previous call to the task is still
executing, as is illustrated in the following example.

In the following example a task called watchdog is called when the test issues an interrupt request.
The task delays for some number of clock cycles, and then prints out a time out error if the
interrupt is not acknowledged. The interrupt number and number of cycles to count are passed in
as input arguments. The test code calls this task twice, in parallel, for two different interrupt
requests.

program test (input bit clock,
input bit [1:0] ack,
output bit [1:0] irq

);

SNUG San Jose 2007 22 More Gotchas in Verilog and SystemVerilog

initial begin: irq_test
$display("Forking off two interrupt requests...");
fork

watchdog (0, 20); // must receive ack[0] within 20 cycles
watchdog (1, 50); // must receive ack[1] within 50 cycles
begin
irq[0] = 1'b1;
irq[1] = 1'b1;
wait (ack)
$display("Received ack at %0d, disabling watchdog", $time);
disable watchdog; // ack received; kill both watchdog tasks

end
join_any
$display("\At %0d, test completed or timed out", $time);
$finish; // abort simulation

end: irq_test

task watchdog (input int irq_num, // GOTCHA: static storage
input int max_cycles // GOTCHA: static storage

);
$display("At %0d: Watchdog timer started for IRQ[%0d] for %0d cycles",

$time, irq_num, max_cycles);
repeat(max_cycles) @(posedge clock) ; // delay until max_cycles reached
$display("Error at time %0d: IRQ[%0d] not received after %0d cycles",

$time, irq_num, max_cycles);
endtask: watchdog

endprogram: test

The example above will not cause a syntax error, but it will result in undesired behavior. The
second call to the watchdog task will overwrite the irq_num and max_count values being used by
the first call. The first call is still running, but now has incorrect values. Gotcha!

How to avoid this gotcha: This gotcha is easy to avoid. The Verilog-2001 standard adds automatic
tasks that resolve this gotcha. All that is required is to add the keyword automatic to the task (or
function) declaration.

task automatic watchdog (input int irq_num, // automatic storage
input int max_cycles // automatic storage
);

...
endtask: watchdog

An automatic task or function is also referred to as a re-entrant task or function. The task or
function can be invoked (or entered) while previous calls are still executing. Each call to the re-
entrant task or function creates new storage that is local to just that call.

SystemVerilog adds two important enhancements. First, SystemVerilog allows a mix of static and
dynamic storage in a task or function. That is, dynamic variables can be declared in static tasks
and functions, or static variables can be declared in automatic tasks and functions. Second,
SystemVerilog allows the automatic keyword to be specified as part of the declaration of a
module, interface, or program.

module automatic chip (...);

SNUG San Jose 2007 23 More Gotchas in Verilog and SystemVerilog

program automatic test (...);

interface automatic bus_if(...);

All variables, tasks and functions within an automatic module, program or interface is automatic
by default. This behavior is like C, where all storage is automatic by default.

3.11 Compile error from a local variable declaration

Gotcha: I get compile errors on my local variable declarations, but the declaration syntax is
correct.

Synopsis: Verilog and SystemVerilog allow local variables to be declared within a statement
group, but require all declarations to come before any procedural code.

Verilog and SystemVerilog allow local variables to be declared within a begin...end or
fork...join statement group. Local variables must be declared before any programming
statements.

initial begin
transaction tr = new; // this is a declaration, not procedural
bit status; // this is a declaration
status = tr.randomize; // this is a procedural statement
extended_trans etr; // ILLEGAL: this is a declaration
...

end

How to avoid this gotcha: Two modeling styles can be used to fix this local variable gotcha:
declare all variables at the top of the block, or create a new block to localize the scope of a
variable. Each style is shown below:

initial begin // move all declarations to the top of the block
extended_trans etr; // LEGAL: this is a declaration
transaction tr = new; // this is a declaration, not procedural
bit status; // this is a declaration
status = tr.randomize; // this is a procedural statement
...

end

initial begin
transaction tr = new; // this is a declaration, not procedural
bit status; // this is a declaration
status = tr.randomize; // this is a procedural statement
begin // create a new block to localize the scope of the variable

extended_trans etr; // LEGAL: this is a declaration
... // use etr variable in local scope

end
...

end

4.0 Object Oriented Programming (OOP) gotchas

4.1 Programming statements in a class get compilation errors

Gotcha: Programming code in an initial procedure compiles OK, but when I move the code to a

SNUG San Jose 2007 24 More Gotchas in Verilog and SystemVerilog

class definition, it won't compile

Synopsis: Class definitions can only have properties (variables) and methods (tasks and
functions); they cannot have procedural programming statements.

The Bar class definition below constructs a Foo object, and attempts to initialize the variable i
within Foo:

class Foo;
int data; // property

function int get (...); // method
...

endfunction
task put (...);

...
endtask

endclass

class Bar;
Foo f = new; // create object f
f.data = 3; // ILLEGAL -- initialize a in object f

endclass

This example causes a compilation error, because any executable code in a class must be in a task
or function. The assignment f.data = 3; in the example above is an executable statement, and
therefore not allowed. A class is a definition, and cannot contain assignment statements,
programming statements, initial blocks or always blocks.

How to avoid this gotcha: All programming statements within a class definition must be within
tasks or functions. If the intent is to initialize an object’s values, as in the preceding example, then
the initialization assignments can be in the new method of the object:

class Foo;
int data;
function new (int d);

this.data = d;
endfunction

endclass

class Bar;
Foo f = new(3); // pass initial values to new method of f

endclass

If the intent is for one object to change a child object’s values at any time after the child object is
constructed, then the parent object must contain a function or task to make the change:

class Foo;
int data;
function new (int d);

this.data = d;
endfunction

endclass

class Bar;
Foo f = new(3); // pass initial values to new method of f

SNUG San Jose 2007 25 More Gotchas in Verilog and SystemVerilog

function change_i(m); // use a method to assign to f.i
f.data = m;

endfunction
endclass

Guideline: It is legal to call a new constructor from within a class, as shown above. However, this
is discouraged as the object will be constructed before any of the test program procedural
statements have been executed. This can cause problems if you need to initialize objects in a
certain order.

4.2 Compile errors when using interfaces with classes

Gotcha: I get a compilation error when I try to use interfaces in a class.

Synopsis: Static structural components cannot be directly driven from dynamic code.

In the following example, the driver class, which is a dynamic object, needs to drive data into
the arb_ifc interface, which is a static design object. Since a dynamic object cannot directly
drive static objects such as a module or an interface port, this code is illegal.

In the following example, the driver class needs to
interface arb_ifc(input bit clk);

...
endinterface

program automatic test (arb_ifc.TEST arb);

class driver;
arb_ifc arb; // ERROR: class cannot instantiate interface

function new(arb_ifc arb); // ERROR: task/func arg cannot be interface
this.arb = arb;

endfunction
endclass

initial begin
driver d;
d = new(arb);

end
endprogram

How to avoid this gotcha: An interface is a structural component that represents hardware. It can
contain signals, code, and assertions. Structural components cannot be passed around for use by
dynamic code. Instead, a pointer to the interface is used in the dynamic class object. A pointer to
an interface is called a virtual interface. The purpose of a virtual interface is to allow dynamic
objects to have a handle to a statically elaborated object, and to move data between a dynamic
class object and a static object.

The correct way to model the example above is to make the arb_ifc instance in the driver class
virtual:

class driver;
virtual arb_ifc arb; // pointer to interface

SNUG San Jose 2007 26 More Gotchas in Verilog and SystemVerilog

function new(virtual arb_ifc arb); // pointer to interface
this.arb = arb;

endfunction
endclass

Virtual interfaces are the bridge or link between the class-based testbench and the DUT.

4.3 Objects in mailbox have the same values

Gotcha: My code creates random object values and puts them into a mailbox, but all the objects
coming out of the mailbox have the same value.

Synopsis: The class constructor creates a handle to an object. In order to have multiple objects,
the class constructor must be called multiple times.

The following example puts 10 random object values into a mailbox:
class My_class;

rand int data;
rand logic [47:0] address;
...

endclass

My_class h = new; // construct a My_class object
repeat(10) begin

h.randomize(); // randomize properties in the object
mbx.put(h); // store handle to object in a mailbox

end

The thread that retrieves the objects from the mailbox will find that all the objects contain the
same values, the ones generated by the last call to randomize. The gotcha is caused because the
code only constructs one object, and then randomizes it over and over. The mailbox is full of
handles, but they all refer to a single object.

How to avoid this gotcha: Put the call to the new constructor inside the loop:
my_class h;
repeat(10) begin

h = new; // construct a My_class object
h.randomize(); // randomize properties in the object
mbx.put(h); // store handle to object in a mailbox

end

4.4 Passing object handles to methods using input versus ref arguments

Gotcha: My method constructs and initializes an object, but I can never see the object’s value.

Synopsis: Method input arguments create local copies of variables that are not visible in the
calling scope.

The default direction of methods (tasks and functions) is input. Inputs create local variables for
use within the method. When a method is called, the values of the actual arguments are copied
into the local storage. Any changes to this local storage that are made within the method are not
passed back to the calling scope.

SNUG San Jose 2007 27 More Gotchas in Verilog and SystemVerilog

The following function constructs an object and sets the value of certain properties.
function void build_env(Consumer c, Producer p); // c and p are inputs

mailbox mbx;
mbx = new;
c = new(mbx); // construct object and store handle in c
p = new(mbx); // construct object and store handle in p

endfunction

The code that calls the build_env function will not be able to see the constructed objects because
the function argument directions are not specified, and therefore default to input. Within the
function, c and p are local variables. The new handles that are stored in the local c and p variables
are not passed back to code that called the build_env function.

How to avoid this gotcha: In a method that constructs objects, declare the handle arguments as
ref: A ref argument is a reference to storage in the calling scope of the method. In the
declaration below, when the method constructs an object and stores the handle c and p, the code
that calls build_env will see the new handles, because build_env is changing the storage in the
calling scope.

function void build_env(ref Consumer c, ref Producer p);

4.5 Creating an array of objects

Gotcha: I declared an array of objects, but get a syntax error when I try to construct the array.

Synopsis: An “array of objects” is actually an array of object handles; each handle must be
constructed separately.

It is often useful to declare an array of object handles in order to store handles to multiple objects.
Such an array is often called an “array of objects”, but in actuality it is an array of handles, not an
array of actual objects.

The following example attempts to create an array to hold 8 objects, but the code does not work:
class Transaction;

...
endclass

initial begin
Transaction trans[8]; // An array of 8 Transaction objects

trans = new; // ERROR: cannot call new on an object array
trans = new[8]; // ERROR: cannot call new on an array element

end

How to avoid this gotcha: There is no such thing as an array of objects, only an array of handles.
Each handle in the array points to an individual object. Each object must be constructed
individually, and its handle assigned to an element of the array. The correct way to code the
example above is:

initial begin
Transaction trans[8]; // An array of 8 Transaction objects

foreach (trans[i])
trans[i] = new(); // Construct an object and store handle in array

SNUG San Jose 2007 28 More Gotchas in Verilog and SystemVerilog

end

5.0 Constrained random verification gotchas

5.1 Some object variables are not getting randomized

Gotcha: Some of my class variables are not getting randomized, even though they were tagged as
rand variables.

Synopsis: In order for a property to be randomized, it must have a rand or randc tag.

In order for object variable values to be randomized, each variable in the object must be declared
with a rand or randc tag. Random values are generated when the object’s .randomize method is
called.

The example below has a Payload class, which has a property called data that is tagged to be
randomized. A Header class contains an addr property which is tagged to be randomized, and a
handle to a Payload object. When a Header object is randomized, however, only addr gets a
random value. The payload data is not randomized, even though it has a rand tag.

program test;
class Payload;

rand int data[8]; // data is tagged to be randomized
endclass

class Header;
rand int addr; // addr is tagged to be randomized
Payload p;

function new;
this.p = new;

endfunction
endclass

initial begin
header h = new;
assert(h.randomize()); // randomize address and payload data
$display(h.addr); // addr shows random value
foreach (h.p.data[i])

$display(h.p.data[i]); // GOTCHA! payload data is still 0
end

endprogram

The .randomize method only randomizes properties in the scope of the object being randomized
if the property is declared with a rand or randc tag. If the property is a handle to another object,
the tag must be specified for both the handle and on the properties in the child object. In the
example above, header::addr has been tagged, so it gets updated with random values. The
payload object, header::p, however, is missing the rand modifier, so none of its variables are
randomized, even though Payload::data has the rand tag.

How to avoid this gotcha: All object variables that are to have random values generated, including
handles, must have the rand modifier.

class Header;
rand int addr; // addr is tagged to be randomized

SNUG San Jose 2007 29 More Gotchas in Verilog and SystemVerilog

rand Payload p; // payload is tagged to be randomized
...

endclass

5.2 Boolean constraints on more than two random variables

Gotcha: When I specify constraints on more than two random variables, I don’t get what I expect.

Synopsis: In a series of two Boolean relational operators, the second operation is compared to
the true/false result of the previous operation.

The intent of the constraint in the class below is to randomize lo, med and hi such that lo is less
then med and med is less than hi by using the expression (lo < med < hi;).

class bad1;
rand bit [7:0] lo, med, hi;
constraint increasing { lo < med < hi; }

endclass

A sample output from running the code above looks like this:
lo = 20, med = 224, hi = 164
lo = 114, med = 39, hi = 189
lo = 186, med = 148, hi = 161
lo = 214, med = 223, hi = 201

This constraint does not cause the solver to fail, but the randomized values are not as expected; lo
is sometimes greater than med, and med is sometimes greater than hi. The reason that the
constraint does not work is because the Boolean less-than expressions are evaluated from left to
right. This means that the operation is not comparing med to hi, it is comparing the true/false
result of (lo < med) to hi. The constraint above is evaluated as:

constraint increasing { (lo < med) < hi; }

To resolve this constraint, random values for lo and med are first chosen. The relational less-than
operation (<) returns either 0 or 1 (representing false or true) based on the values of lo and med.
Note that lo has not been constrained to be less than med, only to be evaluated in a Boolean
expression. The value of hi is then constrained to be greater than the result of the test of
(lo < med). Therefore, the constraint is actually that hi has a value greater than 1, and lo and med
are unconstrained. Gotcha!

The following example illustrates the same type of problem. This constraint is intended to create a
values a, b and c such that the three properties have the same value.

class bad2;
rand bit [7:0] a, b, c;
constraint equal {a == b == c; }

endclass

A sample output from running the code above gave the following output:
a = 25, b = 173, c = 0
a = 65, b = 151, c = 0
a = 190, b = 33, c = 0
a = 65, b = 32, c = 0

SNUG San Jose 2007 30 More Gotchas in Verilog and SystemVerilog

A different simulator gives this output:
a = 61, b = 1, c = 0
a = 9, b = 9, c = 1
a = 115, b = 222, c = 0
a = 212, b = 212, c = 1

In this constraint, a, b and c will only be equal if both a and b are randomly selected to be the
value of 1. The probability of this occurring is 1/216, which is nearly 0. This is because the ==
equality operator returns 0 or 1 (for false or true), and the compound expression is evaluated from
left to right. The constraint is equivalent to: (a == b) == c. Therefore, if the randomly selected
values for a and b are equal, c is constrained to be 1, otherwise c is constrained to be 0. This is
very different from what may have been expected. Gotcha!

In should be noted that in both of the examples above, the constraint will not fail. It is always
possible to find a set of values that satisfies the constraint. The effect of the incorrectly coded
constraints will likely be low verification coverage. Determining why the coverage is low could
be very difficult. Gotcha, again!

How to avoid this gotcha: Constraints involving compound Boolean operations should be broken
down to separate statements. The above constraints should be modeled as:

constraint increasing {
lo < med; // lo is constrained to be less than med
med < hi; // med is constrained to be less than hi

}

constraint equal {
a == b; // a is constrained to be equal to b
b == c; // b is constrained to be equal to c

}

5.3 Undetected randomization failures

Gotcha: My class variables do not get random values assigned to them, and no errors or
warnings are generated.

Synopsis: The .randomize returns an error status if a constraint cannot be solved; the error status
must be checked.

It is possible to write constraints that cannot be solved under all conditions. If a constraint can not
be met, then the variables are not randomized. The .randomize method returns a 1 when the
constraint solver succeeds in randomizing the class variables, and a 0 if it does not succeed.

The following example erroneously specifies a constraint such that a must be less than b and b
must be less than a. These randomization failures could go undetected.

program test;
class Bad;

rand bit [7:0] a, b;
constraint ab {a < b;

b < a;} // GOTCHA: coding error could go undetected
endclass

SNUG San Jose 2007 31 More Gotchas in Verilog and SystemVerilog

initial begin
Bad b = new;
b.randomize(); // return value from randomize method ignored

end
endprogram

If the success flag is not checked, the only symptom when a constraint cannot be solved is that
one or more class variables were not randomized. The failure to randomize some class variables
could go undetected. Gotcha!

How to avoid this gotcha: Use SystemVerilog assertions to check the return status of .randomize.
In the example below, an assertion failure is fatal, which will abort simulation or formal
verification.

program test;
class Bad;

rand bit [7:0] a, b;
constraint ab {a < b;

b < a;} // GOTCHA: coding error could go undetected
endclass

initial begin
Bad b = new;
assert(b.randomize()) else $fatal; // abort if randomize fails

end
endprogram

5.4 Unwanted negative numbers in random values

Gotcha: I am getting negative numbers in my random values, where I only wanted positive values.

Synopsis: Unconstrained randomization considers all possible 2-state values within a given data
type.

In the following class, both i and b are signed variables which can store negative values.
class Negs;

rand int i;
rand byte b;

endclass

The int and b types are signed types. Therefore, the .randomize method will generate both
positive and negative values for these variables. If either of these variables is used in a context
where a positive number is required, the outcome could be unexpected or erroneous.

How to avoid this gotcha: When the randomized test variables are to be passed to hardware as
stimulus, it is generally best to use signed types such as logic. This ensures that randomized
values will always be positive values.

There are times when 2-state types need to be used, but only positive numbers are desired. An
example of needing the C-like int, byte, shortint and longint 2-state types is when the
variables are passed to C functions using the SystemVerilog DPI. When 2-state types need to be
used, randomization can be constrained to non-negative numbers.

SNUG San Jose 2007 32 More Gotchas in Verilog and SystemVerilog

class Negs;
rand int i;
rand byte addr;
constraint pos

{ i >= 0;
b >= 0;}

endclass

6.0 SystemVerilog coverage gotchas

6.1 Coverage is always reported as 0% for a cover group

Gotcha: You defined a cover group, but in the cover report, the group always has 0% coverage.

Synopsis: Covergroups are specialized classes and must be constructed before they can be used.

The following example defines a covergroup as part of a class definition. The intent is to provide
coverage of the properties within the class. When the class object is constructed, however, the
covergroup does not keep track of information intended.

program test;
event cg_sample;

class Abc;

rand bit [7:0] a, b, c;
covergroup CG @(cg_sample); // covergroup definition

coverpoint a;
coverpoint b;
coverpoint c;

endgroup
endclass

initial begin
Abc a1 = new; // instance of Abc object
...

A covergroup is a special type of class definition. In order to generate coverage reports, the
covergroup object must first be constructed using the covergroups new method, in the same way
as constructing a class object. The example above constructs an instance of the Abc object, but
does not construct an instance of the CG covergroup. Hence, no coverage information is collected
for the CG group. No errors or warnings are reported for this coding error. The only indication that
there is a problem is an erroneous or incomplete coverage report. Gotcha!

How to avoid this gotcha: An instance of a covergroup must always be constructed in order to
collect coverage information about that group. When the group is defined in a class, as in the
example above, the covergroup instance can be constructed as part of the class’s new function. In
that way, each time a class object is constructed, the covergroup instance for that object will
automatically be constructed.

program test;
event cg_sample;

class Abc;

rand bit [7:0] a, b, c;

SNUG San Jose 2007 33 More Gotchas in Verilog and SystemVerilog

covergroup CG @(cg_sample); // covergroup definition
coverpoint a;
coverpoint b;
coverpoint c;

endgroup

function new;
CG = new; // instance of covergroup CG

endfunction
endclass

initial begin
Abc a1 = new; // instance of Abc object
...

Another reason why coverage could be reported as 0% is that the cover group was never
triggered. This could be because its trigger never fired, or the .sample method for the covergroup
instance was never called.

6.2 The coverage report lumps all instances together

Gotcha: I have several instances of a covergroup, but the coverage report lumps them all
together.

Synopsis: By default, the cover report for a covergroup combines all the instances of a
covergroup together.

The intent in the example below is to measure the coverage on each of two pixel x:y pairs. Two
covergroup objects are constructed, px and py. Instead of seeing separate coverage for each
covergroup, however, the coverage report combines the counts for both groups into a single
coverage total.

covergroup pixelProximity(ref bit signed [12:0] pixel1,
ref bit signed [12:0] pixel2)

@(newPixel);
cp1: coverpoint (pixel2 - pixel1) {

bins lt = {[1:$]}; // is pixel1's coordinate less than pixel2
bins eq = {0}; // did the pixels coincide?
bins gt = {[-4095:-1]}; // is pixel1's coord. greater then pixel2

}
endgroup

pixelProximity px, py;

initial begin
bit signed [12:0] x1, y1, x2, y2;
px = new(x1, y1); // construct first covergroup
py = new(x2, y2); // construct second covergroup
...

end

How to avoid this gotcha: Use the .per_instance option. Put the following statement at the top
of the cover group:

covergroup pixelProximity(ref bit signed [12:0] pixel1,

SNUG San Jose 2007 34 More Gotchas in Verilog and SystemVerilog

ref bit signed [12:0] pixel2)
@(newPixel);
option.per_instance = 1; // report each covergroup instance separately
cp1: coverpoint (pixel2 - pixel1) {

bins lt = {[1:$]}; // is pixel1's coordinate less than pixel2
bins eq = {0}; // did the pixels coincide?
bins gt = {[-4095:-1]}; // is pixel1's coord. greater then pixel2

}
endgroup

6.3 Covergroup arguments directions are sticky

Gotcha: Sometimes my covergroup compiles OK when I construct a covergroup instance, and
sometimes it won’t compile.

Synopsis: A covergroup ref covergroup argument cannot be passed a constant value.

A generic covergroup has arguments so you can pass in values and variables. The default
direction is input, for passing in fixed values, and ref for passing in variables for coverpoints.
The direction is specified is sticky. It remains in effect until a new direction is specified.

In the following example, the call to the covergroup new constructor passes in the variable va and
the constants 0 and 50 for low and high. The code looks like it should do what is expected, but
instead gets a compilation error.

covergroup cg (ref int ra, int low, int high)
@(posedge clk);
coverpoint ra // sample variable passed by reference

{bins good = { [low : high] };
bins bad[] = default;

}
endgroup

initial begin
int va, vb;
int min=0, max=50;
cg c1 = new(va, min, max); // OK
cg c2 = new(vb, 0, 50); // ERROR: cannot pass constants to ref args

end

In the covergroup definition above, ra is a ref argument. This direction is sticky; it affects all
arguments that follow until a different direction is specified. Since no direction is given for low
and high, they also default to ref arguments. The call to the constructor fails because the actual
values passed to ref arguments must be variables; it is not allowed to pass a constant into a ref
argument. The sticky direction behavior of covergroup arguments is similar to task/function
arguments, as described in gotcha 3.9.

How to avoid this gotcha: It is best to always specify the direction for every argument to a
covergroup.This documents the code intent, and prevents the gotcha of an argument inheriting the
direction of a previous argument. In the above example, the first line should be:

covergroup cg (ref int ra, input int low, input int high)
...

endgroup

SNUG San Jose 2007 35 More Gotchas in Verilog and SystemVerilog

7.0 SVA gotchas

7.1 Assertion pass statements execute with a vacuous success

Gotcha: My assertion pass statement executed even though I thought the property was not active.

Synopsis: A vacuous success will execute the assertion pass statement.

The assert property construct can be followed by optional pass and fail statements.
assert property (p_req_ack) $display("passed"); else $display("failed");

The optional pass statement is executed if the property succeeds, and the fail statement is
executed if the assertion fails. The pass fail statements can be any executable statement. Multiple
statements can be executed by grouping them between begin and end.

Most property specifications contain an implication operator, represented by either |-> or =>,
which qualifies when the assertion should be run. The sequence expression before the implication
operator is called the antecedent. The sequence expression after the operator is called the
consequent. A property specification that uses an implication operator has three possible results:
success, failure and vacuous success. If the implication antecedent is true, the consequent is
evaluated, and the property will pass or fail based on the results of testing the consequent. If the
implication antecedent is false, the consequent is a “don’t care”, and the property returns a
vacuous success.

The gotcha is that the assert property statement does not distinguish between a real success
and a vacuous success. Consider the following code which increments a test counter on each
successful assertion. The assertion checks to see if a req is followed by ack 1 clock cycle later.

property p_req_ack;
@(posedge clk) req |-> ##1 ack; // if req, check for ack on next cycle

endproperty

assert property (p_req_ack) req_ack_count++; // GOTCHA

The intention of this code is to count of how many times req was successfully followed by ack.
Instead, the assertion counts both how many times req was followed by ack (successes) and how
many clock cycles in which there was no req (vacuous successes). Gotcha!

How to avoid this gotcha: There are no easy solutions to avoiding this gotcha using the
SystemVerilog-2005 standard. Generally speaking, the best solution is to not use pass statements
with assertions. In the example above, counting how many times req was followed by ack could,
and probably should, be done using a SystemVerilog coverage definitions instead of the assertion
pass statement.

This gotcha has been addressed in the next version of the SystemVerilog standard, planned for late
2008. The IEEE 1800 SystemVerilog standards committee has proposed new system tasks to
control the execution of assertion pass statements: $assertvacuousoff and $assertvacuouson
These system tasks will allow a designer to disable or enable the assertion pass statements on

property
instance

pass statement fail statement
(optional) (optional)

SNUG San Jose 2007 36 More Gotchas in Verilog and SystemVerilog

vacuous successes.

7.2 Concurrent assertions in procedural blocks

Gotcha: My assertion pass statements are executing even when the procedural code does not
execute the assertion.

Synopsis: Concurrent assertions in procedural code actually fire every clock cycle, not just when
the procedural code executes.

A concurrent assertion can be placed inside an initial or always block and guarded by
procedural code, such as an if statement.

property p_req_ack;
@(posedge clk) req |-> ##[1:3] ack;

endproperty

always_ff @(posedge clk) begin
if (state == FETCH)

assert property (p_req_ack) req_ack_count++;
...

end

This example illustrates two gotchas: the assertion fires every clock cycle instead of just when the
procedural code executes the assert property statement, and a vacuous success can occur even
when the property sequence should fail.

Concurrent assertions in procedural code are still concurrent assertions, which mean they run as
concurrent threads, in parallel with the procedural block. Because the assertion is a concurrent
assertion, it executes on every positive edge of clk, even when the if condition is false. Gotcha!

The if condition that guards the assertion in the procedural code becomes an implicit implication
operation in the property. When the if condition is false on a clock edge, the property is a
vacuous success, and the assertion will execute its pass statement, regardless of the state or
condition of the property. The table below summarizes the different conditions for the assertion
above.

state req ack ap1
INIT 0 0 vacuous success
INIT 0 1 vacuous success
INIT 1 0 vacuous success // GOTCHA - the property is false here
INIT 1 1 vacuous success

FETCH 0 0 vacuous success
FETCH 0 1 vacuous success
FETCH 1 0 assert failure
FETCH 1 1 assert pass (real success)

The implication operator in the property will cause a vacuous success on each cycle when req is
0. But, in line 3 of the table above, req is 1 but is not followed by ack. This should be an assertion
failure, but is reported as a vacuous success. Gotcha, again!

The reason is that the procedural if statement implies implication operation. When the if
condition is false, the property is a vacuous success, even if req is not followed by an ack.

SNUG San Jose 2007 37 More Gotchas in Verilog and SystemVerilog

How to avoid this gotcha: Do not have pass statements with concurrent assertions that are called
from procedural code that is guarded by a conditional statement. The $assertvacuouson (see
gotcha 7.1) might also resolve this case, depending on final implementation.

7.3 Mismatch in assert...else statements

Gotcha: My assertion fail statement executes when the assertion succeeds instead of fails.

Synopsis: An “if” without an “else” in an assert pass statement causes the assert “else” (fail)
statement to be paired with the “if” in the pass statement.

The assert and assert property constructs can be followed by optional pass and fail
statements.

assert property (p_req_ack) $display("passed"); else $display("failed");

The optional pass statement is executed if the property succeeds, and the optional fail statement is
executed if the assertion fails. The pass fail statements can be any executable statement.

The pass statement can be any executable statement, including a conditional if or if...else
statement. The following example has a gotcha:

assert property (p_req_ack)
if (cnt_en) req_ack_count++; // assertion pass statement

else $fatal; // GOTCHA — not the assertion fail statement

Assertions follow the same syntax as nested if...else statements, in that the else is associated
with the nearest if. In the example above, the else statement is associated with the if condition
in the assertion pass statement. Syntactically, there is no assertion fail statement in this example.
This is not a syntax error, since the fail statement is optional. Instead the else branch executes
whenever the assertion succeeds or vacuously succeeds, and cnt_en is false. Gotcha!

How to avoid this gotcha:

How to avoid this gotcha: When an if condition is used in an assertion pass statement, then the
code must follow the coding rules of nested if statements. Either an else must be paired with the
if, or the if condition must be encapsulated within a begin…end statement group, as shown
below.

assert property (p_req_ack)
begin

if (cnt_en) req_ack_count++; // assertion pass statement
end

else $fatal; // assertion fail statement

8.0 Tool compatibility gotchas

8.1 Default simulation time units and precision

Gotcha: My design outputs do not change at the same time in different simulators.

property
instance

pass statement fail statement
(optional) (optional)

SNUG San Jose 2007 38 More Gotchas in Verilog and SystemVerilog

Synopsis: Simulators have different defaults for delay time units (the ‘timescale directive).

Time in Verilog is a 64-bit unsigned integer. Delays are specified using a hash mark (#) followed
by as a number. A delay does not have any indication of what increment of time is being
represented.

#2 sum = a + b; // delayed execution of a programming statement

and #3 (y, a, b); // 2-input AND gate with propagation delay

In Verilog, the time unit represented by delays is specified as a characteristic of a module, using a
‘timescale compiler directive. The directive contains two parts, the module’s time units and the
module’s time precision. Each are specified in increments of 1, 10 or 100, in units ranging from
seconds down to femtoseconds. The time precision allows a module to represent non-whole
delays. The precision is relative to the time unit. Within simulation, all delays are scaled to the
smallest precision used by the design. An example of using ‘timescale is:

‘timescale 1ns/100ps
module A (...);

#2.3 ... // delay represents 2.3 nanoseconds
endmodule

module B (...);
#5.5 ... // GOTCHA: delay represents 5.5 what???

endmodule

‘timescale 1ps/1ps
module C (...);

#7 ... // delay represents 7 picoseconds
endmodule

There are two common gotchas with Verilog ‘timescale directive, file order dependencies and
no standard default.

The ‘timescale directive is not bound to modules or files. Once specified, the directive affects
all modules and files that follow the directive, until a new ‘timescale is encountered by the
compiler. This means if some design and/or test files contain time scale directives, and other files
do not, then changing the order the in which files are compiled will change the what a delay
represents in the files that do not have a time scale directive. This can cause radically different
simulation results, even with the same simulator. Gotcha!

The IEEE Verilog standard specifically states that if a file is read in when no ‘timescale has
been specified at all, then a compiler might, or might not, apply a default time unit. This can cause
radically different simulation results when simulating the same design on different simulators.
Gotcha!

How to avoid this gotcha: To avoid this gotcha when using just Verilog, strong coding rules must
be adhered to. One recommendation is to make sure a ‘timescale directive is specified at the
beginning of each and every module, in each and every design or testbench file.

SystemVerilog has two very important enhancements that help avoid the gotchas inherent with the
‘timescale directive. The time unit and time precision specification have been made keywords
that can be specified within a module, and local to just the module. They can also be specified
within interfaces, programs and packages. This eliminates file order dependency problems.

SNUG San Jose 2007 39 More Gotchas in Verilog and SystemVerilog

Second, SystemVerilog allows an explicit time unit to be specified with a delay value. this both
documents the intended time unit, and prevents dependency on what order ‘timescale directives
were encountered by the compiler.

module B (...);
timeunit 1ns;
timeprecision 1ps;

#5.5 ... // delay represents 5.5 nanoseconds

#1ms ... // delay represents 1 millisecond
endmodule

8.2 Package chaining

Gotcha: My packages compile fine on all simulators, but my design that uses the packages will
only compile on some simulators.

Synopsis: When one package imports another package, and a design or testbench file imports the
second package, some simulators make declarations from both packages available, and some do
not.

SystemVerilog packages provide a declarations space for definitions that are to be shared. A
design block or testbench block can import specific package items, or do a wildcard import,
making all items in the package visible. A package can also import items from other packages, as
illustrated below.

package foo;
typedef int unsigned uint_t;
function int func_a (int a);

return ~a;
endfunction

endpackage

package bar;
import foo::func_a; // specific import
import foo::*; // wildcard import
function int func_b (uint_t b);

return ~func_a(b);
endfunction

endpackage

module test;
import bar::*; // wildcard import bar, chain foo
uint_t c; // reference definition in foo
initial begin

$display("func_a(5)=%0d", func_a(5)); // from package foo
$display("func_b(5)=%0d", func_b(5)); // from package bar
$finish;

end
endmodule

The example above illustrates a gotcha. The test module does a wildcard import of package bar,
and then references the uint_t and func_a definitions. These definitions were not defined in
package bar, however. They were imported into package bar from package foo. Some software

SNUG San Jose 2007 40 More Gotchas in Verilog and SystemVerilog

tools permit package chaining in this form, and some simulators do not.

This example compiles with VCS, but will not compile on some other simulators. Gotcha!

How to avoid this gotcha: The gotcha in the example above is a result of an ambiguity in the
SystemVerilog-2005 standard. The standard does not say whether package chaining is, or is not,
allowed. To avoid this gotcha and ensure that design and verification code will work on all
software tools, package chaining should not be used. Instead, a design or verification block should
explicitly import each package that contains definitions used in the module. Either specific object
imports or wildcard imports can be used, so long as each package that is used is explicitly
referenced.

module test;
import foo::*; // wildcard import foo
import bar::*; // wildcard import bar
...

The IEEE SystemVerilog standard working group has addressed this ambiguity in the LRM, and
has proposed a change for the next version of the SystemVerilog standard. The change is to make
implicit package chaining illegal, and to provide a mechanism for explicit package chaining.
When tools implement this proposed change, the example illustrated at the beginning of this
section, which uses implicit package chaining, will be illegal (which means VCS will be wrong).
However, package bar can enable chaining by importing definitions from package foo, and then
exporting some or all of those definitions, thus making them visible to any design or testbench
blocks, or other packages, that import bar.

8.3 Non-standard keywords

Gotcha: My SystemVerilog code only run on one vendor’s tools.

Synopsis: Some tools add proprietary keywords to the IEEE standard’s official reserved
keywords.

Synopsys allows an optional keyword hard to be used with the solve...before constraint
operator. Without this additional keyword, VCS (and presumably other Synopsys tools) do not
enforce the constraint solution order that is specified by solve...before.

constraint ab {
`ifdef SNPS

solve a before b hard; // 'hard' enforces solve before
`else

solve a before b;
`endif
if (a inside {32, 64, 128, 256})

a == b ;
else
a > b;

}

The keyword hard is not a SystemVerilog keyword, and is not in the IEEE 1800-2005
SystemVerilog standard. If hard is used with any vendor’s tool other than Synopsys tools, a
syntax error will result. Gotcha!

SNUG San Jose 2007 41 More Gotchas in Verilog and SystemVerilog

Not to be outdone, another EDA vendor allows an illegal keyword pair, pure virtual, to be used
in the declaration of class methods. This vendor supplies verification libraries with this illegal
construct. Testbenches written with this illegal keyword pair might not compile in other tools.

How to avoid this gotcha: Using non-standard keywords or syntax might be necessary to get the
desired results in a specific product. In VCS, for example, the hard keyword is needed to get a
desired constraint solution order. However, specifying this keyword will prevent the same
verification code from working with other software tools. To avoid this gotcha, conditional
compilation must be used in order to control whether or not the hard keyword (or some other
non-standard construct) is compiled.

constraint ab {
`ifdef VCS

solve a before b hard; // add Synopsys 'hard' specification
`else

solve a before b;
`endif
if (a inside {32, 64, 128, 256})

a == b ;
else
a > b;

}

In the example above, the macro name VCS is predefined in the VCS simulator, and does not need
to be set by the user. If a user-defined macro name is used, then it must be set somewhere in the
design or testbench source code, or on the tool command line.

It should be noted that the pure virtual construct is illegal in the SystemVerilog-2005 syntax,
but a proposal has been approved by the IEEE SystemVerilog standards group to add this to the
next version of the IEEE SystemVerilog standard, along with its syntax and semantics. At the time
this paper was written, there was no proposal to add the hard keyword.

8.4 Array literals versus concatenations

Gotcha: Some tools require one syntax for array literals; other tools require a different syntax.

Synopsis: Array literals and structure literals are enclosed between the tokens ’{ and }, but an
early draft of the SystemVerilog standard used { and } (without the apostrophe).

The Verilog concatenation operator joins one more values and signals into a single vector. The
array and structure literals are a list of one or more individual values. To make the difference
between these constructs obvious (to both engineers and software tools), the syntax for an array or
structural literal is different than a Verilog concatenation. That difference is that the array or
structure literal list of separate values is preceded by an apostrophe.

reg [7:0] data_bus = {4’hF, bus}; // concatenate values into a vector

int data [4] = ’{0, 1, 2, 3}; // list of separate values

struct {
int a, b;
logic [3:0] opcode;

} instruction_word = ’{7, 5, 3}; // list of separate values

SNUG San Jose 2007 42 More Gotchas in Verilog and SystemVerilog

The literal values can be assigned at the time of the array or structure declaration (as shown
below) or any time during simulation as an assignment statement. Multidimensional arrays use
nested sets of array literals, as in:

int twoD[2][3] = ’{ ’{0, 1, 2}, ’{3, 4, 5} };

A nested array literal can also be replicated, similar to Verilog’s replicated concatenation.
int twoD[2][3] = ’{ ’{0, 1, 2}, ’{3{4}} };

There are three gotchas with array and structure literals:
• The difference in syntax between an array literal and a concatenation is subtle and easy to

inadvertently use the wrong construct.
• A concatenation must have fixed size values in its list; an array or structure literal can have

both fixed size and unsized values in its list.
• An early, non-IEEE preliminary draft of the proposed SystemVerilog standard, known as

SystemVerilog 3.1a [6], used curly braces for both concatenations and array/structure literals.

At the time this paper was written, some software tools supported the preliminary syntax, and
some tools required the final syntax. As of the 2006.06-6 release of VCS, the official IEEE 1800
construct is supported. As of early 2007, however, DC, LEDA, Magellan and Formality required
the SystemVerilog 3.1a preliminary syntax for array literals, and reported a fatal syntax error for
the correct IEEE 1800 SystemVerilog syntax. Tools from other EDA vendors, at the time this
paper was wriiten, also have mixed support; some tools require the official IEEE syntax, and
some require the preliminary SystemVerilog 3.1a syntax.

How to avoid this gotcha: Engineers must learn the difference in syntax between concatenations
and array literals. The different tokens help indicate when an list values is intended to represent a
list of separate values (an array or structure literal) and when a list of values is intended to
represent a single value (a concatenation).

The gotcha of some tools requiring an old, non-IEEE syntax cannot be avoided. A work around is
to use conditional compilation around statements containing array or structure literals, to allow
the model to be compiled with either the SystemVerilog 3.1a syntax or the IEEE 1800 syntax.

8.5 Module ports that pass floating point values (real types)

Gotcha: Some tools allow me to declare my input ports as real (floating point), but other tools do
not.

Synopsis: Module output ports that pass floating values are declared as real, but module input
ports that pass floating point values must be declared as var real.

SystemVerilog allows floating point values to be passed through ports. However, the official
IEEE syntax is not intuitive. An output port of a module can be declared as a real (double
precision) or shortreal (single precision) type, but input ports must be declared with a keyword
pair, var real or var shortreal.

module fp_adder
(output real result,
input var real a, b

SNUG San Jose 2007 43 More Gotchas in Verilog and SystemVerilog

);
always @(a, b)

result = a + b;
endmodule

An early, non-IEEE preliminary draft of the proposed SystemVerilog standard, known as
SystemVerilog 3.1a [6], did not require the var keyword be used on input floating point ports. At
the time this paper was written, some SystemVerilog tools require the official IEEE syntax, as
shown above, and get an error if the var keyword is omitted. Other tools, however, require the
preliminary SystemVerilog 3.1a syntax, and get an error if the var keyword is used. The Synopsys
VCS 2006.06 is one of the tools that does not support the official IEEE syntax. Designers are
forced to write two versions of any models that have floating point input ports. Gotcha!

How to avoid this gotcha: There are two gotchas to be avoided:
• The official IEEE syntax in not intuitive

Floating point input ports are declared differently than floating point output ports. This
inconsistency can be confusing to engineers who are not familiar with the syntax. Unfortu-
nately, this gotcha cannot be avoided. Engineers need to know the correct declaration syntax.

• Not all tools support the official IEEE syntax
This gotcha also cannot be avoided. The only work around is to use conditional compilation
around the module port declarations, to allow the same model to be compiled with either the
obsolete, unofficial declaration style or with the official IEEE 1800 declaration style.

9.0 Corrections to the first gotchas paper
Part One of the paper was presented at the SNUG 2006 conference held in Boston, Massachusetts.
The paper title is “Standard Gotchas: Subtleties in the Verilog and SystemVerilog Standards That
Every Engineer Should Know”[1]. Two erratum have been pointed out in the published version of
this paper.

Gotcha 2.12, “Importing from multiple packages”

Published text:
How to avoid this Gotcha: The gotcha with wildcard package imports occurs when there are
some identifiers common to more than one package. In this case, at most only one of the
packages with duplicate identifiers can be wildcard imported.

Correct text:
How to avoid this Gotcha: The gotcha with wildcard package imports occurs when there are
some identifiers common to more than one package. To avoid this gotcha, explicitly import
any duplicate identifiers from the desired package. Wildcard imports of other packages will
not import identifiers that have been explicitly declared or explicitly imported.

Gotcha 5.1, “Self-determined operations versus context-determined operations”

Published text in Table 1, Row 3, Column 1:
Assignment operations
**= <<= >>= <<<= >>>=

SNUG San Jose 2007 44 More Gotchas in Verilog and SystemVerilog

Correct text in Table 1, Row 3, Column 1:
Assignment operations
<<= >>= <<<= >>>=

10.0 References and resources
[1] “Standard Gotchas: Subtleties in the Verilog and SystemVerilog Standards That Every Engineer

Should Know”, by Stuart Sutherland and Don Mills. Published in the proceedings of SNUG Boston,
2006. Available at www.sung-universal.org or www.sutherland-hdl.com/papers.

[2] “IEEE P1364-2005 standard for the Verilog Hardware Description Language”, IEEE, Pascataway,
New Jersey, 2001. ISBN 0-7381-4851-2.

[3] “IEEE 1800-2005 standard for the SystemVerilog Hardware Description and Verification Language”,
IEEE, Pascataway, New Jersey, 2001. ISBN 0- 7381-4811-3.

[4] “SystemVerilog for Design: A Guide to Using SystemVerilog for Hardware Design and Modeling, Sec-
ond Edition”, by Stuart Sutherland, Simon Davidmann and Peter Flake. Published by Springer, Bos-
ton, MA, 2006, ISBN: 0-387-33399-1.

[5] “SystemVerilog for Verification”, by Chris Spear. Published by Springer, Boston, MA, 2006, ISBN: 0-
387-27036-1.

[6] “SystemVerilog 3.1a Language Reference Manual Accellera’s Extensions to Verilog”, Copyright 2004
by Accellera Organization, Inc., Napa, CA, http://www.eda.org/sv/SystemVerilog_3.1a.pdf.

11.0 About the authors
Mr. Stuart Sutherland is a member of the IEEE 1800 working group that oversees both the Verilog
and SystemVerilog standards. He has been involved with the definition of the Verilog standard
since its inception in 1993, and the SystemVerilog standard since work began in 2001. In addition,
Stuart is the technical editor of the official IEEE Verilog and SystemVerilog Language Reference
Manuals (LRMs). Stuart is an independent Verilog consultant, specializing in providing
comprehensive expert training on the Verilog HDL, SystemVerilog and PLI. Stuart is a co-author
of the book “SystemVerilog for Design” and is the author of “The Verilog PLI Handbook”. He
has also authored a number of technical papers on Verilog and SystemVerilog, which are available
at www.sutherland-hdl.com/papers. You can contact Stuart at stuart@sutherland-hdl.com.

Mr. Don Mills has been involved in ASIC design since 1986. During that time, he has work on
more than 30 ASIC projects. Don started using top-down design methodology in 1991 (Synopsys
DC 1.2). Don has developed and implemented top-down ASIC design flow at several companies.
His specialty is integrating tools and automating the flow. Don works for Microchip Technology
Inc. as an internal SystemVerilog and Verilog consultant. Don is a member of the IEEE Verilog
and System Verilog committees that are working on language issues and enhancements. Don has
authored and co-authored numerous papers, such as “SystemVerilog Assertions are for Design
Engineers Too!” and “RTL Coding Styles that Yield Simulation and Synthesis Mismatches”.
Copies of these papers can be found at www.lcdm-eng.com. Mr. Mills can be reached at
mills@lcdm-eng.com or don.mills@microchip.com.

Mr. Chris Spear is a verification consultant for Synopsys, Inc., and has advised companies around
the world on testbench methodology. He is the author of the EDA best seller, “SystemVerilog for
Verification”, and the File I/O package for Verilog. You can contact Chris at Chris@Spear.net.

