
Standard Gotchas
Subtleties in the Verilog and SystemVerilog 

Standards That Every Engineer Should Know!

Don Mills
Microchip

Chandler, Arizona
don.mills@microchip.com

Stuart Sutherland
Sutherland HDL, Inc.

Portland, Oregon
stuart@sutherland-hdl.com



2 of 20

LL
HHDD

SSuutthheerrllaanndd
training engineers
to be SystemVerilog Wizards

Don Mills,Don Mills, MicrochipMicrochip
Stu SutherlandStu Sutherland

Presentation Overview

What is a “gotcha”?

Why do standards have gotchas?

What’s covered in this paper

Several example gotchas, 
and how to avoid them!

Summary



3 of 20

LL
HHDD

SSuutthheerrllaanndd
training engineers
to be SystemVerilog Wizards

Don Mills,Don Mills, MicrochipMicrochip
Stu SutherlandStu Sutherland

What Is A Gotcha?

In programming, a “gotcha” is a legal language construct that 
does not do what the designer expects

A Classic C programming Gotcha...

if (day = 15)

/* process payroll */
If middle of the month, then pay employees…If middle of the month, then pay employees…

GOTCHA! This code will assign the value of 15 to 
day, and then if day is not zero, pay the employees
GOTCHA! This code will assign the value of 15 to 
day, and then if day is not zero, pay the employees

Engineers need to know how to recognize and 
avoid gotchas in hardware modeling!

Gotcha!Gotcha!

In hardware design and verification, most gotchas will simulate,
but give undesired results

Gotchas can be difficult to find and debug
A gotcha can be disastrous if not found before tape-out!



4 of 20

LL
HHDD

SSuutthheerrllaanndd
training engineers
to be SystemVerilog Wizards

Don Mills,Don Mills, MicrochipMicrochip
Stu SutherlandStu SutherlandWhy Do 

Standards Have Gotchas?

Standards developers are idiots
Users of standards are idiots

if (day = 15)

/* process payroll */

while (data = fscanf(…))

/* read in data until it is 0 */

A dumb way to use “assignment 
within an expression”
A dumb way to use “assignment 
within an expression”

A clever way to use “assignment 
within an expression”
A clever way to use “assignment 
within an expression”

Languages can be used the right way, or the wrong way
Gotcha!Gotcha!

Verilog and SystemVerilog allow designers to 
prove what will — and what will not — work correctly

It needs to be legal syntax to model bad hardware

Hardware models are not just simulated, they are synthesized, 
analyzed, emulated, prototyped, formally proved, …

Each type of tool needs different information from the language



5 of 20

LL
HHDD

SSuutthheerrllaanndd
training engineers
to be SystemVerilog Wizards

Don Mills,Don Mills, MicrochipMicrochip
Stu SutherlandStu Sutherland

Is This a Verilog Gotcha?

Is the classic C gotcha also a gotcha in Verilog?

always @(state)
if (state = LOAD)
...

Legal or Illegal?
Illegal!  Verilog does not allow 
assignment statements inside of expressions

If you don’t know the answer, then 
you really need to read this paper!
(We will answer this question at the end of 
our presentation...)

always @(state)
if (state = LOAD)
...

Legal or Illegal?

What about in SystemVerilog?
SystemVerilog extends Verilog with more C and C++ features



6 of 20

LL
HHDD

SSuutthheerrllaanndd
training engineers
to be SystemVerilog Wizards

Don Mills,Don Mills, MicrochipMicrochip
Stu SutherlandStu Sutherland

What’s In This Paper…

Detailed descriptions of 57 gotchas…and how to avoid them!
• Case sensitivity
• Implicit net declarations
• Escaped identifiers in hierarchy paths
• Verification of dynamic data
• Variables declared in unnamed blocks
• Hierarchical references to package items
• Variables not dumped to VCD files
• Shared variables in modules
• Shared variables in interfaces, packages
• Shared variables in tasks and functions
• Importing enum types from packages
• Importing from multiple packages
• Resetting 2-state models
• Locked state machines
• Hidden design problems
• Out-of-bounds indication lost
• Signed versus unsigned literal integers
• Default base of literal integers
• Size mismatch in literal integers

• Literal size mismatch in assignments
• Z extension backward compatibility
• Filling vectors
• Passing real types through ports
• Port connection rules
• Back-driven input ports
• Self- & context-determined operations
• Operation size and sign extension 
• Signed math operations
• Bit and part select operations
• Increment and decrement operations
• Pre-increment versus post-increment
• Multiple read/writes in one statement
• Operator evaluation short circuiting
• Assignments in expressions
• Procedural block activation
• Combinational logic sensitivity lists
• Arrays in sensitivity lists
• Vectors in sensitivity lists

• Operations in sensitivity lists
• Sequential blocks with begin...end
• Sequential blocks with partial reset
• Blocking assigns in sequential blocks
• Evaluation of true/false on 4-state values
• Not operator versus invert operator
• Nested if...else blocks
• Casez/casex masks in case expressions
• Incomplete or redundant decisions
• Out-of-bounds in enumerated types
• Statements that hide design problems
• Simulation versus synthesis mismatches
• Multiple levels of same virtual method
• Event trigger race conditions
• Using semaphores for synchronization
• Using mailboxes for synchronization
• Coverage reporting
• $unit declarations
• Compiling $unit



7 of 20

LL
HHDD

SSuutthheerrllaanndd
training engineers
to be SystemVerilog Wizards

Don Mills,Don Mills, MicrochipMicrochip
Stu SutherlandStu SutherlandA Classic Verilog Gotcha: 

Implicit Net Declarations

An undeclared signal used in a netlist infers an implicit net
Implicit nets can save typing hundreds of lines of code in a large, 
gate-level design
But…

An undeclared vector connection infers a 1-bit wire, not a vector;
A typographical error in a netlist becomes a functional bug

xor u1 (n0, a, b);

and u2 (n1, nO, c);

ram u3 (addr, data, nl); 

Nets n0 “en-zero” and nO “en-oh” are 
inferred, but are not connected together
Nets n0 “en-zero” and nO “en-oh” are 
inferred, but are not connected together

Verilog’s default_nettype none turns off implicit net types
SystemVerilog .name and .* port connections will not infer nets

Gotcha!Gotcha!

Nets n1 “en-one” and nl “en-ell” are 
inferred, but are not connected together

Nets addr and data are inferred as 1-bit 
wires, but should probably be vectorsTo avoid this Gotcha…



8 of 20

LL
HHDD

SSuutthheerrllaanndd
training engineers
to be SystemVerilog Wizards

Don Mills,Don Mills, MicrochipMicrochip
Stu SutherlandStu SutherlandGotcha: Default Base of 

Literal Numbers is Decimal

Optionally, literal numbers can be defined with a base

But…the default base is decimal

’hC // unsized hex value 2’b01 // sized binary value

reg [1:0] state;

always @(state)
case (state)

00: // do State 0 stuff
01: // do State 1 stuff
10: // do State 2 stuff
11: // do State 3 stuff

endcase

Hint:  There are 10 types of people in the world… 
those that know binary, and those that don’t!

Hint:  There are 10 types of people in the world… 
those that know binary, and those that don’t!

Why don’t states 2 and 3
ever execute?

To avoid this Gotcha…
Use unique case to detect the error
Use based numbers to fix the problem (e.g 2’b10)

Gotcha!Gotcha!



9 of 20

LL
HHDD

SSuutthheerrllaanndd
training engineers
to be SystemVerilog Wizards

Don Mills,Don Mills, MicrochipMicrochip
Stu SutherlandStu SutherlandGotcha: Literal Numbers Are 

Zero-extended to Their Size

Literal number syntax is: <size>’<signed><base><value>
<size> (optional) is the number of bits (default size is 32 bits)
<signed> (optional) is the letter s or S (default is unsigned)
<base> is b, o, d, h for binary, octal, decimal or hex (not case sensitive)

’hC // unsized hex value 2’b01 // sized binary value

To avoid this Gotcha…
Engineers need to learn Verilog’s sign extension rules!

If the size does not match the number of bits in the value:
If the left-most bit of value is 0 or 1, the value is left-extended with 0
If the left-most bit of value is Z, the value is left-extended with Z
If the left-most bit of value is X, the value is left-extended with X
But…a signed value is not sign-extended!

8’shA is not sign-extended 
because the sign bit is the 
MSB of the size, not the 

MSB of the value!

8’shA is not sign-extended 
because the sign bit is the 
MSB of the size, not the 

MSB of the value!

8’hA unsigned value extends to 00001010
8’shA signed value extends to 00001010

Gotcha!Gotcha!



10 of 20

LL
HHDD

SSuutthheerrllaanndd
training engineers
to be SystemVerilog Wizards

Don Mills,Don Mills, MicrochipMicrochip
Stu SutherlandStu SutherlandGotcha: Importing Enumerated 

Types from Packages

Packages declarations can be “imported” into modules
But…importing an enumerated type does not import the 
enumerated labels
package chip_types;
typedef enum {RESET, WAITE, LOAD, READY} states_t;

endpackage

module chip (...);
import chip_types::states_t;
states_t state, next_state;

always @(posedge clk, negedge rstN)
if (!resetN) state <= RESET;

...
RESET has not been 
imported into chip
RESET has not been 
imported into chip

import chip_types::*;

To avoid this Gotcha…
Either use a wildcard import to import the full package, or explicitly 
import each enumerated label

Gotcha!Gotcha!



11 of 20

LL
HHDD

SSuutthheerrllaanndd
training engineers
to be SystemVerilog Wizards

Don Mills,Don Mills, MicrochipMicrochip
Stu SutherlandStu SutherlandGotcha: Locked State Machines 

with Enumerated Types

Enumerated types are useful for modeling FSM state names
But…enumerated variables start simulation with uninitialized 
values (the starting value of the base data type of the enum)

module chip (...);
typedef enum {WAITE, LOAD, READY} states_t;
states_t  State, nState;

always_ff @(posedge clk, negedge rstN)
if (!rstN) State <= WAITE;
else       State <= nState;

always @(State)
case (State)
WAITE: nState = LOAD; 

...

State and nState both begin with WAITE
The default base data type is int
The uninitialized value of an int is 0
The default value of WAITE is 0

State and nState both begin with WAITE
The default base data type is int
The uninitialized value of an int is 0
The default value of WAITE is 0

Use always_comb instead of always @(State) or always @*

Gotcha!Gotcha!

Reset sets State to WAITEReset sets State to WAITE
Since State is already WAITE, there is no change to State
The always @(State) does not trigger
nState does not get updated (remains WAITE)

A posedge clock sets State to nState, which is WAITEA posedge clock sets State to nState, which is WAITE
Since State is already WAITE, there is no change to State
The always @(State) does not trigger
nState does not get updated (remains WAITE)To avoid this Gotcha…

and/or declare the enumerated type with a 4-state base type



12 of 20

LL
HHDD

SSuutthheerrllaanndd
training engineers
to be SystemVerilog Wizards

Don Mills,Don Mills, MicrochipMicrochip
Stu SutherlandStu SutherlandGotcha: Out-of-Bounds in 

Enumerated Types

Enumerated types define a legal set of values for a variable
It is illegal to assign an enumerated variable a value not in its list
But…power-up and/or casting can cause out-of-bounds values

module chip (...);
typedef enum logic [2:0] {WAITE=3’b001, LOAD=3’b010, READY=3’b100} states_t;
states_t  State, nState;
always_comb begin
if (enable) nState = states_t’(State + 1); // move to next label in list?
...

If State is WAITE, adding 1 results in nState having 3’b010 (the value of LOAD) If State is WAITE, adding 1 results in nState having 3’b010 (the value of LOAD) 

nState = State.next; // move to next label in list

To avoid this Gotcha…
Out-of-bounds at power-up is useful—it indicates reset problems
Out-of-bounds assignments can be prevented using enumerated 
methods

Gotcha!Gotcha!

If State is LOAD, adding 1 results in nState having 3’b011 (not in the enumerated list!)
If State is WAITE, adding 1 results in nState having 3’b101 (not in the enumerated list!)
At start of simulation, State and nState have 3’bxxx (not in the enumerated list!)



13 of 20

LL
HHDD

SSuutthheerrllaanndd
training engineers
to be SystemVerilog Wizards

Don Mills,Don Mills, MicrochipMicrochip
Stu SutherlandStu SutherlandGotcha: Hierarchical 

References to Package Items

Verification can peek inside a design scope using hierarchy paths
Hierarchy paths reference objects where there are declared
But…package items are not declared within the design scope

package chip_types;
typedef enum {RESET, WAITE, LOAD, READY} states_t;

endpackage

module chip (...);
import chip_types::*;
always @(posedge clk, negedge rstN)
if (!resetN) state <= RESET;

...

module test (...);
chip dut (...); 
...
master_reset = 1;
##1 assert (dut.state == dut.RESET);

Module chip can use RESET, but RESET is not defined in chipModule chip can use RESET, but RESET is not defined in chip

##1 assert (dut.state == chip_types::RESET);

To avoid this Gotcha…
The package must also be imported into test bench, OR…
Package items can be referenced with a “scope resolution 
operator”

Gotcha!Gotcha!



14 of 20

LL
HHDD

SSuutthheerrllaanndd
training engineers
to be SystemVerilog Wizards

Don Mills,Don Mills, MicrochipMicrochip
Stu SutherlandStu SutherlandGotcha: Operation 

Size and Sign Extension

There are two types of operators in Verilog and SystemVerilog
Self-determined operators do not modify their operand(s)

logic [1:0] a;
logic [3:0] b;
ena = a && b;

Logical-AND is self-determined (the operation on a
does not depend on the size or signedness of ena or b; 
the operation on b does not depend on ena or a)

Logical-AND is self-determined (the operation on a
does not depend on the size or signedness of ena or b; 
the operation on b does not depend on ena or a)

What is -1 + 1?

logic signed [3:0] a;
logic signed [4:0] c;
a = -1;
c = a + 1’b1;

ADD is context-determined (the operation depends on 
the size of a, c and 1’b1) and signedness of a and 1’b1)
ADD is context-determined (the operation depends on 
the size of a, c and 1’b1) and signedness of a and 1’b1)

Context-determined operators modify all operands to have the 
same size, using zero-extension or sign-extension

But,… the context for size and sign are different!

Answer A: -1 + 1’b1 = -16 !Gotcha!Gotcha!

To avoid this Gotcha…
You have got to know if an operator is self-determined or context-
determined — See the table in this paper!

Answer: -2 !

Answer B: -1 + 1’sb1 = -2 !
Answer C: -1 + 2’sb01 = 0 !



15 of 20

LL
HHDD

SSuutthheerrllaanndd
training engineers
to be SystemVerilog Wizards

Don Mills,Don Mills, MicrochipMicrochip
Stu SutherlandStu SutherlandExplanation of Operation Size 

and Sign Extension Example

Context-determined operators modify all operands to have the 
same size, using zero-extension or sign-extension
But,… the context for size and sign are different!

The context for size is both the right and left-hand side of an assignment
The context for signedness is just the right-hand side of an assignment

Why is “c = a + 1’b1” = -16?

logic signed [3:0] a = -1;
logic signed [4:0] c;

Size context is 5-bits (largest expression size is c)
Sign context is unsigned (1’b1 is an unsigned expression)

a is 1111 (-1) which extends to 01111 ( 15)
1’b1 is 1 ( 1) which extends to 00001 ( 1)

c = 10000 (-16)

Size context is 5-bits (largest expression size is c)
Sign context is unsigned (1’b1 is an unsigned expression)

a is 1111 (-1) which extends to 01111 ( 15)
1’b1 is 1 ( 1) which extends to 00001 ( 1)

c = 10000 (-16)

Size context is 5-bits (largest expression size is c)
Sign context is signed (a and 1’sb1 are signed expressions)

a is 1111 (-1) which extends to 11111 (-1)
1’b1 is 1 ( 1) which extends to 11111 (-1)

c = 11110 (-2)

Size context is 5-bits (largest expression size is c)
Sign context is signed (a and 1’sb1 are signed expressions)

a is 1111 (-1) which extends to 11111 (-1)
1’b1 is 1 ( 1) which extends to 11111 (-1)

c = 11110 (-2)

Why is “c = a + 1’sb1” = -2?



16 of 20

LL
HHDD

SSuutthheerrllaanndd
training engineers
to be SystemVerilog Wizards

Don Mills,Don Mills, MicrochipMicrochip
Stu SutherlandStu Sutherland

Gotcha: Signed Arithmetic

Math operations are context-determined
Signed arithmetic is done if all operands are signed
But,… If any operand in the context is unsigned, then unsigned 
arithmetic is done

logic signed [3:0] a, b;
logic ci;
logic signed [4:0] sum;
sum = a + b + ci; 

Unsigned adder, even though a, b and sum are signedUnsigned adder, even though a, b and sum are signed

Signed adder that subtracts carry inSigned adder that subtracts carry in

To avoid this Gotcha…
Engineers must know Verilog’s context-operation rules!

sum = a + b + signed’({1’b0,ci}); 

Gotcha!Gotcha!

logic signed [3:0] a, b;
logic signed ci;
logic signed [4:0] sum;
sum = a + b + ci; 

signed

Gotcha!Gotcha!

Size context is largest vector on left and right sides
a, b and ci are extended to 5 bits before being added

Sign context is only the operands on right side
ci is unsigned, so the context is unsigned
a and b are converted to unsigned and zero extended

a, b and ci are signed, so the context is signed
if ci is 1, sign extending to 5 bits gives 11111 (binary) 
As a signed value, 11111 (binary) is -1!



17 of 20

LL
HHDD

SSuutthheerrllaanndd
training engineers
to be SystemVerilog Wizards

Don Mills,Don Mills, MicrochipMicrochip
Stu SutherlandStu SutherlandGotcha: 

Operations in Sensitivity Lists

Verilog sensitivity lists can contain operations
But,… the list is only sensitive to changes in the operation result

always @(a or b)
sum = a + b;

“or” is a separator, not an operation; 
Sensitive to changes on a or b
“or” is a separator, not an operation; 
Sensitive to changes on a or b

To avoid this Gotcha…
For combinational logic, use always @* or always_comb to 
infer a correct combinational logic
For sequential logic, using a comma instead of “or” to separate 
items in the sensitivity list

If a is 1, and b changes 
from 0 to 1, the block 
will trigger

If a is 1, and b changes 
from 0 to 1, the block 
will trigger

always @(a || b)
sum = a + b;

“||” is the logical-OR operator;  
Sensitive to changes on the result of 
the test “is a true, OR is b true”

“||” is the logical-OR operator;  
Sensitive to changes on the result of 
the test “is a true, OR is b true”

If a is 1, and b changes 
from 0 to 1, the block 
will not trigger

If a is 1, and b changes 
from 0 to 1, the block 
will not trigger

Gotcha!Gotcha!



18 of 20

LL
HHDD

SSuutthheerrllaanndd
training engineers
to be SystemVerilog Wizards

Don Mills,Don Mills, MicrochipMicrochip
Stu SutherlandStu SutherlandGotcha: 

Assignments in Expressions

Is the classic C gotcha also a gotcha in SystemVerilog?

To avoid this Gotcha…
“It is what it is” — Engineers need to learn the unique 
SystemVerilog syntax

always @(state)
if (state = LOAD)
...

Legal or Illegal?

The different syntax helps prevent the 
gotcha of using = where == is intended, but…
The different syntax helps prevent the 
gotcha of using = where == is intended, but…always @(state)

if ( (state = LOAD) )
...

SystemVerilog allows assignments in expressions…
But,… the syntax is different than C — the assign statement must 
be enclosed in parentheses

Gotcha!Gotcha!
The different syntax is confusing to C/C++ 
programmers when an assignment is intended



19 of 20

LL
HHDD

SSuutthheerrllaanndd
training engineers
to be SystemVerilog Wizards

Don Mills,Don Mills, MicrochipMicrochip
Stu SutherlandStu Sutherland

Summary

Programming languages have gotchas

This paper describes 57 Verilog and SystemVerilog gotchas

A gotcha in a hardware model can be disastrous

A legal construct used in a way that gives unexpected results
Gotchas occur because useful language features can be abused
Some gotchas are because Verilog and SystemVerilog allow 
engineers to prove what won’t work in hardware

Difficult to find and debug
If not found before tape-out, can be very costly

Detailed explanations of each gotcha
Guidelines on how to avoid each gotcha
Lots of code examples



20 of 20

LL
HHDD

SSuutthheerrllaanndd
training engineers
to be SystemVerilog Wizards

Don Mills,Don Mills, MicrochipMicrochip
Stu SutherlandStu Sutherland

Do you have a favorite gotcha that is not in the paper?

Questions & Answers…

Please send it to Stu or Don!
And then stay tuned for a “Standard Gotchas, Part 2” paper 
at some future SNUG...

don.mills@microchip.comstuart@sutherland.com


