
Using the New Verilog-2001 Standard
Part 1: Modeling Hardware

by Sutherland HDL, Inc., Portland, Oregon, 2001

Part 1-1

Using the New Verilog-2001 Standard
Part One: Modeling Designs

by

Stuart Sutherland
Sutherland HDL, Inc.

Portland, Oregon

Part 1-2

L
H D

Sutherland

All material in this presentation is copyrighted by Sutherland HDL, Inc., Portland,
Oregon. All rights reserved. No material from this presentation may be duplicated or
transmitted by any means or in any form without the express written permission of
Sutherland HDL, Inc.

copyright notice

Sutherland HDL Incorporated
22805 SW 92nd Place

Tualatin, OR 97062 USA

phone: (503) 692-0898
fax: (503) 692-1512

e-mail: info@sutherland-hdl.com
web: www.sutherland-hdl.com

©2001

Verilog is a registered trademark of Cadence Design Systems, San Jose, CA

Using the New Verilog-2001 Standard
Part 1: Modeling Hardware

by Sutherland HDL, Inc., Portland, Oregon, 2001

Part 1-2

Part 1-3

L
H D

SutherlandAbout Stuart Sutherland
and Sutherland HDL, Inc.

◆ Sutherland HDL, Inc. (founded 1992)
◆ Provides expert Verilog HDL and PLI design services
◆ Provides Verilog HDL and PLI Training
◆ Located near Portland Oregon, World-wide services

◆ Mr. Stuart Sutherland
◆ Over 13 years experience with Verilog
◆ Worked as a design engineer on military flight simulators
◆ Senior Applications Engineer for Gateway Design

Automation, the founding company of Verilog
◆ Author of the popular “Verilog HDL Quick Reference Guide”

and “The Verilog PLI Handbook”
◆ Involved in the IEEE 1364 Verilog standardization

Part 1-4

L
H D

SutherlandSeminar Objectives

◆ The focus of this seminar is on understanding what is new
in the Verilog-2001 standard
◆ An overview of the Verilog HDL
◆ Details on the major enhancements in Verilog-2001
◆ Ideas on how you can use these enhancements, today

◆ Assumptions:
◆ You have a background in hardware engineering
◆ You are at least familiar with using Verilog-1995

Using the New Verilog-2001 Standard
Part 1: Modeling Hardware

by Sutherland HDL, Inc., Portland, Oregon, 2001

Part 1-3

Part 1-5

L
H D

SutherlandSeminar Flow

◆ Part 1 covers Verilog-2001 enhancements that primarily affect
modeling hardware
◆ ANSI C style port lists
◆ Sensitivity list enhancements
◆ Model attributes
◆ Signed data types and signed arithmetic
◆ Multidimensional arrays

◆ Part 2 covers Verilog-2001 enhancements that primarily affect
verifying hardware
◆ New compiler directives
◆ Enhanced File I/O
◆ Re-entrant tasks and recursive functions
◆ Generate blocks
◆ Configuration blocks
◆ Deep submicron timing accuracy enhancements

Part 1-6

L
H D

SutherlandVerilog-2001 Update

◆ The IEEE Std. 1364-2001 Verilog standard is official

◆ Work on the standard was finished in March, 2000

◆ IEEE balloting on the standard was completed in July, 2000

◆ Clarifications to the standard as a result of ballot comments
were approved in December, 2000

◆ The IEEE officially ratified the standard in March, 2001

Using the New Verilog-2001 Standard
Part 1: Modeling Hardware

by Sutherland HDL, Inc., Portland, Oregon, 2001

Part 1-4

Part 1-7

L
H D

SutherlandWhy a New Standard?

◆ Add enhancements to Verilog
◆ Design methodologies are evolving

◆ System level design, intellectual property models, design
re-use, very deep submicron, etc.

◆ Cliff Cummings’ “Top Five Enhancement Requests” from a
survey at the HDLCon 1996 conference

◆ Clarify ambiguities in Verilog 1364-1995
◆ The 1364-1995 reference manual came the Gateway

Design Automation Verilog-XL User’s Manual
◆ Verilog-2001 more clearly defines Verilog syntax and

semantics

Part 1-8

L
H D

SutherlandGoals for Verilog-2001

◆ Enhance Verilog for
◆ Higher level, abstract system level modeling
◆ Intellectual Property (IP) modeling
◆ Greater timing accuracy for very deep submicron

◆ Make Verilog even easier to use
◆ Eliminate redundancies in declarations
◆ Simplify syntax of some verbose constructs

◆ Correct errata and ambiguities

◆ Maintain backward compatibility

◆ Ensure that EDA vendors will implement all enhancements!

Using the New Verilog-2001 Standard
Part 1: Modeling Hardware

by Sutherland HDL, Inc., Portland, Oregon, 2001

Part 1-5

Part 1-9

L
H D

SutherlandOverview of HDL Enhancements

◆ 30+ major enhancements were added to the Verilog HDL
◆ Brief description and examples
◆ New reserved words

◆ Errata and clarifications
◆ Dozens of corrections were made to the 1364-1995

standard
◆ Do not affect Verilog users
◆ Very important to Verilog tool implementors
◆ Not listed in this paper — refer to the 1364-2001 Verilog

Language Reference Manual (LRM)

Part 1-10

L
H D

SutherlandSupport For Verilog-2001

◆ Several simulator and synthesis companies are working on
adding support for the Verilog-2001 enhancements

◆ Simulators:
◆ Model Technology ModelSim — currently supports most new features
◆ Co-Design SystemSim — currently supports most new features
◆ Synopsys VCS — planned Q3-2001 support for several new features
◆ Cadence NC-Verilog and Verilog-XL — no announced release date

◆ Synthesis:
◆ Synopsys Presto (replaces DC compiler) — currently supports a

synthesizable subset of Verilog-2001 enhancements
◆ Cadence BuildGates — no announced release date
◆ Exemplar Leonardo Spectrum — no announced release date

Information last updated July, 2001

Using the New Verilog-2001 Standard
Part 1: Modeling Hardware

by Sutherland HDL, Inc., Portland, Oregon, 2001

Part 1-6

Part 1-11

L
H D

SutherlandHistory of the Verilog HDL

◆ 1984: Gateway Design Automation introduced the Verilog-XL
digital logic simulator
◆ The Verilog language was part of the Verilog-XL simulator
◆ The language was mostly created by 1 person, Phil Moorby
◆ The language was intended to be used with only 1 product

◆ 1989: Gateway merged into Cadence Design Systems
◆ 1990: Cadence made the Verilog HDL public domain

◆ Open Verilog International (OVI) controlled the language
◆ 1995: The IEEE standardized the Verilog HDL (IEEE 1364)
◆ 2001: The IEEE enhanced the Verilog HDL for modeling

scalable designs, deep sub-micron accuracy, etc.

Part 1-12

L
H D

Sutherland

module name (ports) ;

endmodule

Quick Review:
Contents of a Verilog Model

◆ Verilog modules are the building blocks for Verilog designs
◆ Modules may represent:

◆ An entire design
◆ Major hierarchical blocks

within a design
◆ Individual components

within a design

module name (ports) ;

endmodule

data type declarations

port declarations

functionality

timing

Modules are completely self contained
• The only things “global” in Verilog are

the names of modules and primitives
• Verilog does not have global variables

or functions

Using the New Verilog-2001 Standard
Part 1: Modeling Hardware

by Sutherland HDL, Inc., Portland, Oregon, 2001

Part 1-7

Part 1-13

L
H D

Sutherland

module addbit (a, b, ci, sum, co);
input a, b, ci;
output sum, co;

wire a, b, ci;
reg sum, co;

endmodule

functionality
& timing

a

b

ci

sum

co

1-bit Adder

module name

port declarations

◆ Port declarations define the direction and size of each port

Quick Review:
Module Declarations

◆ Module name is a user-defined name for the model
◆ Module ports are signals that pass in and out

module ports

In Verilog-1995, The names of the
ports are repeated in three places

◆ Data type declarations define signals used inside the module

data type
declarations

Part 1-14

L
H D

SutherlandVerilog-2001 Combines
Port and Data Type Declarations

◆ The port direction and the data type of the signal can be
combined into one statement
◆ Reduces the number of times the port name is typed
◆ Does not change functionality

module addbit (a, b, ci, sum, co);
input wire a, b, ci;
output reg sum, co;

endmodule

functionality
& timing

a

b

ci

sum

co

1-bit Adder
Combined declarations

Using the New Verilog-2001 Standard
Part 1: Modeling Hardware

by Sutherland HDL, Inc., Portland, Oregon, 2001

Part 1-8

Part 1-15

L
H D

SutherlandVerilog-2001 Adds
ANSI C Style Port Declarations

◆ The port direction and data type of the signal can be included
in the port list
◆ Further reduces the number of times the port name is typed
◆ Makes Verilog more consistent with C
◆ Does not change functionality

module addbit (input wire a,
input wire b
input wire ci,
output reg sum, co);

endmodule

functionality
& timing

a

b

ci

sum

co

1-bit Adder

The original Verilog HDL was created before the ANSI C
standard, and used the old Kernighan & Ritchie syntax

ANSI C style port lists

Part 1-16

L
H D

SutherlandQuick Review:
Modeling Abstraction Levels

Behavioral Models
(function only)

If enable is true
for (i=0; i<=15; i=i+1)

abstract
model

RTL (Register Transfer Level) Models
(function only, with all clock timing)

At every positive edge of clock
result_register = a + b + carry

detailed
model

◆ Functionality can be represented at various levels of “abstraction”

Structural Models
(also called Gate Level Models)

(function & structure)

Verilog-2001 has many enhancements
that affect the Behavioral, RTL and
Structural levels of modeling

Digital Switch Models
(closest to actual silicon)

Using the New Verilog-2001 Standard
Part 1: Modeling Hardware

by Sutherland HDL, Inc., Portland, Oregon, 2001

Part 1-9

Part 1-17

L
H D

Sutherland

module addbit (input wire a,
input wire b
input wire ci,
output reg sum, co);

initial
begin

sum = 0;
co = 0;

end

always @(a or b or ci)
begin

{co, sum} = a + b + ci;
end

endmodule

◆ Begin with the keywords
initial or always

◆ Contain programming
statements

◆ Multiple statements are
grouped with
begin and end

◆ Behavioral and RTL
models use the
same Verilog constructs

Quick Review:
Abstract Model Functionality

◆ Abstract functionality is represented using procedures

Part 1-18

L
H D

Sutherland

module addbit (input wire a,
input wire b
input wire ci,
output reg sum, co);

wire n1, n2, n3;

xor g1 (n1, a, b);
xor g2 (sum, n1, ci);
and g3 (n2, a, b);
and g4 (n3, n1, ci);
or g5 (co, n2, n3);

endmodule

Quick Review:
Detailed Model Functionality

◆ Structural functionality is modeled with a netlist
◆ A netlist is a list of components and connections

◆ The components may be primitive instances (this page)
◆ The components may be module instances (next page)

1-bit Adder
a
b

ci

n1

n2

n3

sum

co

g1

g3

g2

g4 g5

netlist of primitive instances

each instance has a
unique instance name

Using the New Verilog-2001 Standard
Part 1: Modeling Hardware

by Sutherland HDL, Inc., Portland, Oregon, 2001

Part 1-10

Part 1-19

L
H D

Sutherland

4-bit Adder
ci

r1 out
r2

co

module add4 (input wire [3:0] r1, r2,
input wire ci;
output wire [3:0] out;
output wire co);

wire ci, c1, c2, c3, co; //internal nets

addbit i1 (r1[0],r2[0],ci,out[0],c1);
addbit i2 (r1[1],r2[1],c1,out[1],c2);
addbit i3 (r1[2],r2[2],c2,out[2],c3);
addbit i4 (r1[3],r2[3],c3,out[3],co);

endmodule

module addbit (a,b,ci,sum,co);
input a, b, ci;
output sum, co;

endmodule

behavioral or RTL
or gate level model

Quick Review:
Using Modules as Components

◆ A netlist can use module instances as components

r1 and r2 are 4-bit vectors

r1 bit 0 is connected to
instance i1 of addbit

i1 i2 i3 i4

Part 1-20

L
H D

SutherlandQuick Review:
More On Verilog Procedures

◆ RTL models use procedures to represent functionality
initial
begin
a = 0;
#10 a = 1;

end

◆ An initial procedure will execute once
◆ When the procedure is completed, it is

not re-executed

always @(a or b)
begin
sum = a + b;
diff = a - b;

end

◆ An always procedure is an infinite loop
◆ When the procedure is completed,

it returns to the top and starts over

◆ always procedures model the continuous operation of hardware
◆ initial procedures are primarily for the simulation test bench

◆ Within a procedure, statements between the begin—end execute
in the order they are listed

Using the New Verilog-2001 Standard
Part 1: Modeling Hardware

by Sutherland HDL, Inc., Portland, Oregon, 2001

Part 1-11

Part 1-21

L
H D

SutherlandQuick Review:
Controlling Verilog Procedures

◆ initial and always procedures may contain 3 types of timing:

always
#2 sum = a + b;

delays execution of the next statement
for a specific amount of time

Time based delays — the # token

always
wait (enable == 1) sum = a + b;

delays execution of the next statement
until a logic test evaluates as TRUE

Level sensitive delays — the wait keyword

always
@(posedge clock) sum <= a + b; delays execution of the next statement

until a change occurs on a signal

Edge sensitive delays — the @ token

Each time control delays execution of the next statement or statement group

Part 1-22

L
H D

Sutherland

initial
begin
sum = 0;

end

always @(a or b)
begin
sum = a + b;

end

always @(posedge clk)
begin
q <= sum;

end

initial
begin
a = 0;
b = 0;
#10 a = 1;
...

end

Time 0

Procedures are not like subroutines, which
must be called in order to be activatedNote:

Quick Review:
Procedural Block Activation

◆ All procedures automatically become active at time zero

Using the New Verilog-2001 Standard
Part 1: Modeling Hardware

by Sutherland HDL, Inc., Portland, Oregon, 2001

Part 1-12

Part 1-23

L
H D

SutherlandQuick Review:
Procedural Sensitivity Lists

◆ The execution of a statements within a procedure can be
controlled using an event-control sensitivity list
◆ Procedures automatically become active at time zero
◆ Execution of statements is delayed until a change occurs

on a signal in the “sensitivity list”

always @(a or b or ci)
begin
sum = a + b + ci;

end

always @ (<edge> <signal> or <edge> <signal>)
◆ <edge> may be posedge or negedge

◆ If no edge is specified, then any transition is used
◆ Sensitivity to multiple signals is specified using an “or” separated list

A sensitivity list controls when the following
statement group is executed

Note: this is the word “or”, not a logical “OR”

Part 1-24

L
H D

Sutherland

◆ The word or in an event-control sensitivity list confuses new
Verilog users
◆ It is the same word as the logical or gate primitive
◆ Every other list in Verilog uses a comma (,) as a

separator, instead of a word

◆ Verilog-2001 allows a comma to be used in an event control
sensitivity list
◆ Makes Verilog easier to use
◆ Does not change functionality

Verilog-2001 Allows
Comma-Separated Sensitivity Lists

always @(a, b, ci)

sum = a + b + ci;

Comma-separated sensitivity list

Using the New Verilog-2001 Standard
Part 1: Modeling Hardware

by Sutherland HDL, Inc., Portland, Oregon, 2001

Part 1-13

Part 1-25

L
H D

SutherlandQuick Review:
RTL Modeling Definition

◆ Register Transfer Level modeling defines the registers in a
design, and the combinational logic on the register inputs

◆ The values to be stored in registers must be defined for
every clock cycle

Guidelines:
• All module outputs should be registered
• Only use one clock per module

combinational
logic

combinational
logic

Part 1-26

L
H D

SutherlandQuick Review:
Combinational vs. Sequential Logic

◆ In combinational logic, the output is a direct reflection of the
input values

a

b

sum

Adder

d

clock

q

Flip-Flop

◆ In sequential logic, the output is a reflection of an internally
stored value

Using the New Verilog-2001 Standard
Part 1: Modeling Hardware

by Sutherland HDL, Inc., Portland, Oregon, 2001

Part 1-14

Part 1-27

L
H D

Sutherland

module dff32 (q, d, clock, reset);
//port and data type declarations

always @(posedge clock, negedge reset)
begin
if (!reset) //active low reset
q <= 32’b0;

else
q <= d;

end

endmodule

The sensitivity list triggers
on the active edges of the

clock or any other
asynchronous inputs

Quick Review:
Modeling Sequential Logic

◆ RTL models of sequential logic are represented with an always
procedure
◆ The procedures “triggers” on a specific clock edge

Part 1-28

L
H D

SutherlandQuick Review:
Modeling Combinational Logic

◆ An always procedure must re-evaluate the outputs whenever
an “input” changes value
◆ An “input” is any signal used to determine the value of

assignments

a

b

sel

ymux

module mux (y, a, b, sel);
output y;
input a, b, sel;
wire a, b, sel;
reg y;

always _________________
if (sel == 1’b0)

y = a;
else

y = b;
endmodule

How can this be modeled so that y is
re-evaluated every time an input changes?

Using the New Verilog-2001 Standard
Part 1: Modeling Hardware

by Sutherland HDL, Inc., Portland, Oregon, 2001

Part 1-15

Part 1-29

L
H D

SutherlandVerilog-2001 Adds
A Combinational Logic Sensitivity

◆ Verilog-2001 adds a “wildcard” token to indicate a
combinational logic sensitivity list
◆ The @* token is a time control which indicates that the

control is automatically sensitive to any change on any
“input” to the statement or group-of-statements that follows
◆ An “input” is any signal whose value is read by the

statement or statement group

always @(sel or a or b or c or d)
case (sel)
2’b00: y = a;
2’b01: y = b;
2’b10: y = c;
2’b11: y = d;

endcase

Verilog-1995
always @*
case (sel)
2’b00: y = a;
2’b01: y = b;
2’b10: y = c;
2’b11: y = d;

endcase

Verilog-2001

Part 1-30

L
H D

SutherlandQuick Review:
Synthesis Pragmas

◆ Synthesis has “full case” and “parallel case” commands
◆ Full case informs the synthesis tool that it is logically

impossible for undefined cases to occur
◆ Parallel case informs the synthesis tool that the case items

do not need to be evaluated in the sequence listed
◆ Synopsys and other synthesis companies embed their

commands in Verilog comments (called “pragmas”)
// FSM with one-hot encoding
always @(state)

case (state) //synopsys parallel_case synopsys full_case
3’b001: next_state = 3’b010;
3’b010: next_state = 3’b100;
3’b100: next_state = 3’b001;

endcase

Using the New Verilog-2001 Standard
Part 1: Modeling Hardware

by Sutherland HDL, Inc., Portland, Oregon, 2001

Part 1-16

Part 1-31

L
H D

SutherlandVerilog-2001 Adds
Attributes

◆ Verilog-2001 adds “attribute” properties
◆ A standard means to specify tool specific information within

Verilog models
◆ Adds new tokens (* and *)
◆ Eliminates need to hide commands in comments

◆ The Verilog-2001 standard does not define any attributes
◆ Software vendors can define proprietary attributes
◆ Other standards might define standard attributes

◆ For example, the Verilog Synthesis Interoperability Group is
proposing a standard set of synthesis attributes

case (state) /* synopsys full_case */Verilog-1995

(* rtl_synthesis, full_case *) case (state)Verilog-2001

Part 1-32

L
H D

SutherlandQuick Review:
Integer Numbers

◆ Numbers can be simple, unsized decimal values
◆ Default to “at least” 32 bit signed values

Example Binary Notes______________________
1 00...001 unsized 32-bit decimal value

Example Binary Notes_____
8’hCA 11001010 sized hex

’hf 0...01111 unsized hex

Example Binary Notes_____
8’hF? 1111ZZZZ sized hex

6’b01_0011 010011 sized binary

◆ Numbers can be sized, based values: <size>’<base><value>
◆ <size> (optional) is the number of bits (defaults to at least 32 bits)
◆ ’<base> is ’b, ’B, ’o, ’O, ’d, ’D, ’h, ’H (binary, octal, decimal, hex)
◆ <value> is 0-9 a-f A-F x X z Z ? _

◆ A ? in a value is the same as Z (high impedance)
◆ An underscore (_) is ignored — used for readability

◆ Values with a radix are unsigned values

Note: Decimal numbers cannot not use values of X, Z or ?

Using the New Verilog-2001 Standard
Part 1: Modeling Hardware

by Sutherland HDL, Inc., Portland, Oregon, 2001

Part 1-17

Part 1-33

L
H D

SutherlandQuick Review:
Integer Numbers — continued

◆ Verilog adjusts the <value> to match the specified <size>
◆ When <size> is fewer bits than <value>, the left-most bits of

value are truncated
◆ When <size> is more bits than <value>, the left-most bits

are filled, based on the value of the left-most bit of <value>
◆ If the left-most bit is 0 or 1, the value is filled with 0
◆ If the left-most bit is Z, the value is filled with Z
◆ If the left-most bit is X, the value is filled with X

Example Binary Notes___
2’hCA 10 truncated
6’hA 001010 0 filled

64’bz ZZ...ZZZZZ Z filled

Verilog-2001 adds to these rules on left-extending a value (see next page)

Part 1-34

L
H D

SutherlandVerilog-2001 Adds
Signed, Based Integer Numbers

◆ In Verilog-1995, an integer number with a base specified was
always treated as an unsigned value

◆ Verilog-2001 adds an optional sign specifier before the base:
<size>’<s><base><value>
◆ Affects left-extension when size is more bits than value

◆ If unsigned, then left extend with 0 if left-most bit is 0 or 1
(fill with Z if left-most bit is Z, and X if left-most bit is X)

◆ If signed, then sign-extend (fill with value of left-most bit)
◆ Affects math operations
◆ Affects assignment statements

Example Binary Notes__ _
6’hA 001010 0 filled

6’shA 111010 sign extended

Using the New Verilog-2001 Standard
Part 1: Modeling Hardware

by Sutherland HDL, Inc., Portland, Oregon, 2001

Part 1-18

Part 1-35

L
H D

SutherlandQuick Review:
Module Port Declarations

◆ Module ports may be declared as:
◆ input, output or inout (bi-directional)
◆ Modules may have any number of ports

module sram(address, rw, ce, data, parity);

input [11:0] address;

input rw, ce;

inout [7:0] data;

output parity;

<port_direction> <list_of_identifiers>;
<port_direction> [msb:lsb] <list_of_identifiers>;

scalar declaration

vector declaration

As previously shown, Verilog-2001 also supports ANSI C style port declarations

Part 1-36

L
H D

SutherlandQuick Review:
Net Data Types

◆ Net data types represent structural connections in a design

◆ Each net type has resolution functionality that is used to
model different types of connections (CMOS, ECL, etc.)
Net Data Type Functionality

wire or tri Interconnecting wire (models CMOS)
wor or trior Multiple drivers OR together (models ECL)
wand or triand Multiple drivers AND together (models Open-Collector)
tri0 Net pulls down when not driven (pull strength)
tri1 Net pulls up when not driven (pull strength)
supply0 Net has a constant logic 0 (supply strength)
supply1 Net has a constant logic 1 (supply strength)
trireg Stores last value when not driven (models capacitance)

In Verilog-1995, all net data types are unsigned (the most-significant bit is not a sign bit)

Using the New Verilog-2001 Standard
Part 1: Modeling Hardware

by Sutherland HDL, Inc., Portland, Oregon, 2001

Part 1-19

Part 1-37

L
H D

Sutherland

Variable Data Type Functionality

reg Unsigned variable or any bit size
integer Signed 32-bit variable
time Unsigned 64-bit variable
real Double precision floating point variable
event Momentary flag with no value or storage

Quick Review:
Verilog Variable Data Types

◆ Variable data types are used in procedures
◆ Variables are assigned values in initial & always procedures

◆ Verilog variables do not infer hardware registers!

The Verilog-1995 (and earlier) standards referred to these data types as “registers”

Verilog-2001 refers to these data types as “variables” to avoid confusing the
data types with hardware flip-flops

Part 1-38

L
H D

SutherlandQuick Review:
Data Type Declarations

◆ Net type declaration syntax:
◆ <net_type> <list_of_identifiers>;
◆ <net_type> [msb:lsb] <list_of_identifiers>;
◆ reg <list_of_identifiers>;
◆ reg [msb:lsb] <list_of_identifiers>;
◆ <variable_type> <list_of_identifiers>;
wire a, b, ci; //three scalar (1-bit) wires

wire [31:0] busA, busB; //two 32-bit buses — little endian

wire [0:31] busC; //one 32-bit bus — big endian

reg [15:0] busD; //one 16 bit unsigned variable

integer i, j, k; //three integer variables (32-bit)

vector declaration

scalar declaration

Using the New Verilog-2001 Standard
Part 1: Modeling Hardware

by Sutherland HDL, Inc., Portland, Oregon, 2001

Part 1-20

Part 1-39

L
H D

SutherlandVerilog-2001 Adds
Variable Declaration With Initialization

◆ Verilog-2001 permits initializing variables at the time they are
declared
◆ The initialization is executed in time-step zero, just like initial

procedures

reg clock;

initial
clk = 0;

Verilog-1995
reg clock = 0;

Verilog-2001

Initialization assignments occur in time 0, and can be
executed in any order along with other time 0 events

Part 1-40

L
H D

SutherlandVerilog-2001 Adds
Signed Ports, Reg and Net Data Types

◆ In Verilog-1995, the reg variable, all net data types and module
ports were always treated as unsigned

◆ Verilog-2001 allows reg and net types as well as module ports
to be declared as signed
◆ Affects math operations
◆ Affects assignment statements

module add4 (
input wire signed [63:0] r1, r2,
input wire ci;
output reg signed [63:0] out;
output reg co);
...
endmodule

When ports and data types are declared separately (Verilog-1995 style) then if either the
port or the data type is declared as signed, the other will inherit the sign property

Using the New Verilog-2001 Standard
Part 1: Modeling Hardware

by Sutherland HDL, Inc., Portland, Oregon, 2001

Part 1-21

Part 1-41

L
H D

SutherlandQuick Review:
Implicit Net Declarations

◆ An undeclared signal will default to a net data type, if :
◆ It is connected to a primitive instance or module instance
◆ It is on the left-hand side of a continuous assignment and it

is also a port of that module
◆ The implicit data type is wire

◆ Can be changed with the `default_nettype compiler directive
◆ The default net size is determined by context

◆ Port size if the implicit net is also a port of the module
◆ Scalar if the implicit net is an internal signal

module cpu (data, address, reset);
output [7:0] data; //8-bit port

data_prom (data, enable, ...);
...

if not declared,
defaults to a
scalar wire

if not declared,
defaults to an

8-bit wire

Part 1-42

L
H D

SutherlandQuick Review:
Continuous Assignment Statements

◆ A continuous assignment is a special concurrent process
that continuously evaluates and updates a net data type

◆ Declared outside of initial or always procedures
◆ Automatically becomes active at simulation time zero
◆ May use operators, but not programming statements

assign #<delay> <net> = <expression>;

module adder64 (sum, a, b, ci);
//declarations

wire [63:0] sum;
assign sum = a + b + ci;

endmodule

sum is continuously assigned
the value of a + b + ci

With Verilog-1995, sum would be an implicit net IF it is
also a port, otherwise the assignment would be an error

What if sum had not been declared?

Using the New Verilog-2001 Standard
Part 1: Modeling Hardware

by Sutherland HDL, Inc., Portland, Oregon, 2001

Part 1-22

Part 1-43

L
H D

SutherlandVerilog-2001 Adds
Default Nets with Continuous Assigns

◆ In Verilog-1995, the left-hand side must be explicitly declared,
if not connected to a port of the module

◆ Verilog-2001 will default to a net data type on the left-hand side
of any continuous assignment
◆ The left-hand side net will default to 1-bit wide, if not

connected to a port of the module
module mult32 (y, a, b);
output [63:0] y;
input [31:0] a, b;
assign y = a * b; //defaults to wire, width of port y
assign eq = (a == b); //ERROR: ‘n’ not declared

endmodule

Verilog-1995

assign eq = (a == b); //defaults to 1-bit wireVerilog-2001

Part 1-44

L
H D

SutherlandVerilog-2001 Can
Disable Default Net Declarations

◆ Verilog-2001 provides a means to disable default net
declarations

`default_nettype none

◆ Any undeclared signals will be a syntax error
◆ “none” is not a new reserved word, it is an argument to the

compiler directive
`default_nettype none

module bad_chip (output wire [7:0] o1,
input wire [7:0] n0,
input wire [7:0] n1);

assign ol = nO & nl; //there are 3 typo’s in this line!

endmodule

• Verilog-1995 would compile without an error, requiring debugging in simulation
• Verilog-2001 will report an error on the undefined signals

Using the New Verilog-2001 Standard
Part 1: Modeling Hardware

by Sutherland HDL, Inc., Portland, Oregon, 2001

Part 1-23

Part 1-45

L
H D

Sutherland

given: wire [15:0] data;

data //selects the entire vector

data[7] //selects one bit out of the vector

data[15:8] //selects eight bits out of the vector

Quick Review:
Vector Bit and Part Selects

◆ Bits or parts of a vector are selected with a bit index or bit range
◆ A bit select references a discrete bit within a vector
◆ A part select references consecutive bits within a vector

◆ In Verilog-1995, part selects had to use constant expressions
for the left and right indices

data[i] //variable bit selects are legal

data[i+8:i] //ILLEGAL; variable part selects not allowed

Part 1-46

L
H D

SutherlandVerilog-2001 Adds
Variable Vector Part Selects

◆ Verilog-2001 adds the capability to use variables to select a
group of bits from a vector
◆ The starting point of the part-select can vary
◆ The width of the part-select remains constant

reg [63:0] word;
reg [3:0] byte_num; //a value from 0 to 7
wire [7:0] byteN = word[byte_num*8 +: 8];

The starting point of the
part-select is variable

The width of the
part-select is constant

+: indicates the part-select increases from the starting point
-: indicates the part-select decreases from the starting point

Using the New Verilog-2001 Standard
Part 1: Modeling Hardware

by Sutherland HDL, Inc., Portland, Oregon, 2001

Part 1-24

Part 1-47

L
H D

SutherlandQuick Review:
Arrays of Variables

◆ In Verilog-1995, 1-dimensional arrays of variable data types
may be declared

◆ A entire word in the array is selected using an address index

◆ Bit and part selects from an array are not allowed in Verilog-1995

reg [15:0] RAM [0:1023]; //array of 1024 16-bit reg types

reg [8:15] matrix [255:0]; //array of 256 8-bit reg types

integer i [100:199]; //array of 100 32-bit integers

<variable_type> [<vector_size>] <identifier> [first_addr:last_addr];

data = RAM[100]; //read value in address 100 of array

RAM[addr_bus] = data; //write to an address in RAM

Part 1-48

L
H D

SutherlandVerilog-2001 Adds
Multi-dimensional Arrays

◆ Verilog-2001 adds:
◆ Multidimensional arrays of any variable data type
◆ Multidimensional arrays of any net data type

//declare a 3-dimensional array of 8-bit wire nets
wire [7:0] array3 [0:255][0:255][0:15];

//select one word out of a 3-dimensional array
wire [7:0] out3 = array3[addr1][addr2][addr3];

Using the New Verilog-2001 Standard
Part 1: Modeling Hardware

by Sutherland HDL, Inc., Portland, Oregon, 2001

Part 1-25

Part 1-49

L
H D

SutherlandVerilog-2001 Adds
Array Bit and Part Selects

◆ Verilog-2001 allows:
◆ Bit-selects out of an array
◆ Part-selects out of an array

//select the high-order byte of one word in a
//2-dimensional array of 32-bit reg variables
reg [31:0] array2 [0:255][0:15];

wire [7:0] out2 = array2[100][7][31:24];

Part 1-50

L
H D

SutherlandQuick Review:
Verilog Assignment Rules

◆ Assignments are made from right to left, with the LSB of the
right-hand side assigned to the LSB of the left-hand side

◆ If the right-hand side width is different than the left-hand side:
◆ If the LHS is smaller, the left-most bits are truncated
◆ In Verilog-1995, if the LHS is larger, the left-most bits are

always filled with zero

given: reg [3:0] a, y; and a is 4’b0010
y = a; will transfer the value of a, working from right to left

= 00 11 00 00

given: reg [3:0] a, b;
Example Stores Notes

a = 8’hF1 4’b0001 the left-most bits are truncated
b = 2’b11 4’b0011 the left-most bits are zero filled

Using the New Verilog-2001 Standard
Part 1: Modeling Hardware

by Sutherland HDL, Inc., Portland, Oregon, 2001

Part 1-26

Part 1-51

L
H D

SutherlandVerilog-2001
Automatic Width Extension Past 32 bits

◆ In Verilog-1995, Verilog assignments zero fill when the left-
hand side is wider than the right-hand side
◆ The widths of the RHS must be hard-coded for correct results

◆ Verilog-2001 will:
◆ Sign-extend signed data types to the width of the left-hand side
◆ Extend a logic Z or X to the width of the left-hand side

data = i; //fills with 'hfffffffffffffffd
data = 'bz; //fills with 'hzzzzzzzzzzzzzzzzVerilog-2001

data = i; //fills with 'h00000000fffffffd
data = 'bz; //fills with 'h00000000zzzzzzzz

data = {{32{i[31]}},i}; //fills with 'hfffffffffffffffd
data = 64'bz; //fills with 'hzzzzzzzzzzzzzzzz

Verilog-1995

reg [63:0] data;
integer i = -3; //32-bit wide signed negative valueGiven

Part 1-52

L
H D

SutherlandQuick Review:
Verilog Operator Tokens

◆ Bit wise and shift operators operate on each bit of a vector
◆ ~ & | ^ ~^ ^~ >> << (example: (a_bus & b_bus))

◆ Unary reduction operators collapse a vector to a 1-bit result
◆ & ~& | ~| ^ ~^ ^~ (example: parity = ^data)

◆ Logical and relational operators perform true/false tests
◆ ! && || < <= > => == != === !==

(examples: (a <= b) (a && b) (!a))
◆ Mathematical operators perform calculations

◆ + - * / % (example: a + b)
◆ The conditional operator performs a true/false test

◆ ? : (example: out = (enable==1)? in : 8’bz;)
◆ The concatenate operators join signals together

◆ { } {{ }} (example: {a_bus,b_bus})
Refer to the Verilog

Quick Reference Guide
for a description of

each operator

Using the New Verilog-2001 Standard
Part 1: Modeling Hardware

by Sutherland HDL, Inc., Portland, Oregon, 2001

Part 1-27

Part 1-53

L
H D

SutherlandVerilog-2001 Adds
A Power Operator

◆ Verilog-2001 adds an exponential power operator
◆ Represented by the ** token
◆ Similar to the C pow() function
◆ If either operand is real, a real value is returned
◆ If both operands are integers, an integer value is returned

module ram (...);
parameter WORD_SIZE = 64;
parameter ADDR_SIZE = 24;

reg [WORD_SIZE-1:0] core [0:(2**ADDR_SIZE)-1];
...

Part 1-54

L
H D

SutherlandVerilog-2001 Adds
Arithmetic Shift Operators

◆ Verilog-2001 adds arithmetic shift operators
◆ The >>> token does an arithmetic shift right, filling with the

value of the sign bit
◆ Different than the >> bit shift right operator, which always

fills with zero
◆ The <<< token does an arithmetic shift left, filling with zeros

◆ Same functionality as the << bit shift left operator

Given: in = 8’b11001010;

assign out = in >> 3; //bit shift right results in ‘b00011001

assign out = in >>> 3; //arithmetic shift right results in ‘b11111001

Using the New Verilog-2001 Standard
Part 1: Modeling Hardware

by Sutherland HDL, Inc., Portland, Oregon, 2001

Part 1-28

Part 1-55

L
H D

Sutherland

◆ Floating point arithmetic is used if either operand is real
◆ Integer arithmetic is used if both operands are integer

◆ Signed arithmetic is used if both operands are signed
◆ Unsigned arithmetic is used if either operand is unsigned

Quick Review:
Arithmetic Operator Special Rules

◆ Arithmetic operations are based on the data type of the operands

Examples: reg [3:0] m, n; integer i; real r;
m = 5 n = 2 i = -2 r = -2.0

m / n is
m / i is
5 / i is
m /2.0 is
5 / r is

The rules for wire and reg data types match how logic gates would perform the operation

Part 1-56

L
H D

SutherlandVerilog-2001 Adds
Sign “Casting” System Functions

◆ Verilog-2001 adds several signed arithmetic enhancements
◆ Signed net, reg and port declarations

◆ Vectors of any size can be signed, instead of just the 32-
bit integer variable

◆ Signed function returns
◆ New $signed() and $unsigned() system functions can

“cast” a value to signed or unsigned

Examples: reg [3:0] m; integer i;
m = 5 i = -2

m / i is
$signed(m) / i is

The rules for operations do not change — Verilog-2001 just gives more signed operands

Using the New Verilog-2001 Standard
Part 1: Modeling Hardware

by Sutherland HDL, Inc., Portland, Oregon, 2001

Part 1-29

Part 1-57

L
H D

SutherlandCongratulations!

this concludes Part 1 of the workshop
“Using the New Verilog-2001 Standard”

◆ If you are a design engineer, we recommend:
“Comprehensive Verilog HDL for Design Engineers”

◆ By Sutherland HDL, Inc. — www.sutherland-hdl.com
◆ Our 4-day workshop covers the entire Verilog language,

including the new Verilog-2001 features, with lots of labs
◆ If you are a verification engineer, we recommend:

“Advanced Verilog PLI Training”
◆ By Sutherland HDL, Inc. — www.sutherland-hdl.com
◆ A 4-day workshop on customizing and extending Verilog

simulators by linking in C-based models, test routines, etc.

Where can I learn even more?

Part 1-58

L
H D

SutherlandAdditional Resources:
Verilog & Synthesis Books

◆ www.verilog-2001.com
◆ Information about the Verilog-2001 standard

◆ Verilog HDL Quick Reference Guide, Verilog-2001 version
◆ Stuart Sutherland—easy place for keywords, syntax, etc.

◆ IEEE Std 1364-2001
◆ IEEE Standard Hardware Description Language Based on

the Verilog Hardware Description Language
◆ The Verilog Hardware Description Language

◆ Donald Thomas & Phil Moorby—good Verilog introduction
◆ The Verilog PLI Handbook

◆ Stuart Sutherland—using the PLI to extend the Verilog HDL
check www.sutherland-hdl.com for a list of over 30 books

Using the New Verilog-2001 Standard
Part 1: Modeling Hardware

by Sutherland HDL, Inc., Portland, Oregon, 2001

Part 1-30

Part 1-59

L
H D

SutherlandAdditional Resources:
Verilog & Synthesis Resources

◆ www.sutherland-hdl.com
◆ Stuart Sutherland's web site — lots of Verilog web links

◆ comp.lang.verilog newsgroup
◆ Great place to get quick answers to Verilog questions
◆ Other newsgroups: comp.lang.vhdl, comp.cad.synthesis,

comp.arch.fpga
◆ ESNUG - E-mail Synopsys Users Group

◆ John Cooley — jcooley@world.std.com
◆ Verification Guild – Verilog/VHDL verification newsletter

◆ Janick Bergeron's newsletter on design verification —
www.janick.bergeron.com

Part 1-60

L
H D

SutherlandAdditional Resources:
Verilog & Synthesis Conferences

◆ HDLCon — International HDL Conference
◆ Formerly IVC/VIUF (International Verilog Conference /

VHDL International Users Forum)
◆ Good conference for information about Verilog/VHDL

software tools
◆ www.hdlcon.org

◆ SNUG — Synopsys Users Group Conference
◆ The best technical conference on Verilog/VHDL design

methodologies and synthesis
◆ www.synopsys.com (click on the SNUG link)

